Suppr超能文献

用于真实多平台高光谱图像去噪的无监督自适应学习

Unsupervised Adaptation Learning for Real Multiplatform Hyperspectral Image Denoising.

作者信息

Luo Zhaozhi, Wang Xinyu, Pellikka Petri, Heiskanen Janne, Zhong Yanfei

出版信息

IEEE Trans Cybern. 2024 Oct;54(10):5781-5794. doi: 10.1109/TCYB.2024.3412270. Epub 2024 Oct 9.

Abstract

Real hyperspectral images (HSIs) are ineluctably contaminated by diverse types of noise, which severely limits the image usability. Recently, transfer learning has been introduced in hyperspectral denoising networks to improve model generalizability. However, the current frameworks often rely on image priors and struggle to retain the fidelity of background information. In this article, an unsupervised adaptation learning (UAL)-based hyperspectral denoising network (UALHDN) is proposed to address these issues. The core idea is first learning a general image prior for most HSIs, and then adapting it to a real HSI by learning the deep priors and maintaining background consistency, without introducing hand-crafted priors. Following this notion, a spatial-spectral residual denoiser, a global modeling discriminator, and a hyperspectral discrete representation learning scheme are introduced in the UALHDN framework, and are employed across two learning stages. First, the denoiser and the discriminator are pretrained using synthetic noisy-clean ground-based HSI pairs. Subsequently, the denoiser is further fine-tuned on the real multiplatform HSI according to a spatial-spectral consistency constraint and a background consistency loss in an unsupervised manner. A hyperspectral discrete representation learning scheme is also designed in the fine-tuning stage to extract semantic features and estimate noise-free components, exploring the deep priors specific for real HSIs. The applicability and generalizability of the proposed UALHDN framework were verified through the experiments on real HSIs from various platforms and sensors, including unmanned aerial vehicle-borne, airborne, spaceborne, and Martian datasets. The UAL denoising scheme shows a superior denoising ability when compared with the state-of-the-art hyperspectral denoisers.

摘要

真实的高光谱图像(HSIs)不可避免地会受到各种类型噪声的污染,这严重限制了图像的可用性。最近,迁移学习已被引入高光谱去噪网络以提高模型的通用性。然而,当前的框架通常依赖于图像先验,并且难以保留背景信息的保真度。在本文中,提出了一种基于无监督自适应学习(UAL)的高光谱去噪网络(UALHDN)来解决这些问题。其核心思想是首先为大多数高光谱图像学习一个通用的图像先验,然后通过学习深度先验并保持背景一致性将其应用于真实的高光谱图像,而无需引入手工制作的先验。基于这一概念,在UALHDN框架中引入了空间光谱残差去噪器、全局建模判别器和高光谱离散表示学习方案,并在两个学习阶段中使用。首先,使用合成的有噪声-无噪声地面高光谱图像对预训练去噪器和判别器。随后,根据空间光谱一致性约束和背景一致性损失,以无监督的方式在真实的多平台高光谱图像上对去噪器进行进一步微调。在微调阶段还设计了一种高光谱离散表示学习方案,以提取语义特征并估计无噪声分量,探索真实高光谱图像特有的深度先验。通过对来自各种平台和传感器的真实高光谱图像进行实验,包括无人机搭载、机载、星载和火星数据集,验证了所提出的UALHDN框架的适用性和通用性。与现有最先进的高光谱去噪器相比,UAL去噪方案显示出卓越的去噪能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验