Suppr超能文献

基于深度学习的教育领域计算智能实时安全监控系统。

Computationally intelligent real-time security surveillance system in the education sector using deep learning.

机构信息

Department of Computer Science, National Textile University, Faisalabad, Pakistan.

出版信息

PLoS One. 2024 Jul 11;19(7):e0301908. doi: 10.1371/journal.pone.0301908. eCollection 2024.

Abstract

Real-time security surveillance and identity matching using face detection and recognition are central research areas within computer vision. The classical facial detection techniques include Haar-like, MTCNN, AdaBoost, and others. These techniques employ template matching and geometric facial features for detecting faces, striving for a balance between detection time and accuracy. To address this issue, the current research presents an enhanced FaceNet network. The RetinaFace is employed to perform expeditious face detection and alignment. Subsequently, FaceNet, with an improved loss function is used to achieve face verification and recognition with high accuracy. The presented work involves a comparative evaluation of the proposed network framework against both traditional and deep learning techniques in terms of face detection and recognition performance. The experimental findings demonstrate that an enhanced FaceNet can successfully meet the real-time facial recognition requirements, and the accuracy of face recognition is 99.86% which fulfills the actual requirement. Consequently, the proposed solution holds significant potential for applications in face detection and recognition within the education sector for real-time security surveillance.

摘要

使用面部检测和识别的实时安全监控和身份匹配是计算机视觉的核心研究领域。经典的面部检测技术包括 Haar-like、MTCNN、AdaBoost 等。这些技术采用模板匹配和几何面部特征来检测面部,在检测时间和准确性之间寻求平衡。为了解决这个问题,目前的研究提出了一个增强的 FaceNet 网络。RetinaFace 用于快速进行面部检测和对齐。然后,使用改进的损失函数的 FaceNet 用于实现高精度的面部验证和识别。本工作通过与传统和深度学习技术进行比较评估,评估了所提出的网络框架在面部检测和识别方面的性能。实验结果表明,增强的 FaceNet 可以成功满足实时人脸识别的要求,人脸识别的准确率为 99.86%,满足实际要求。因此,该解决方案在教育领域的实时安全监控中的面部检测和识别应用中具有重要的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef6/11238971/13fcf7219f91/pone.0301908.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验