Suppr超能文献

通过环氧化物氢解制备高对映体富集的仲醇。

Highly Enantiomerically Enriched Secondary Alcohols via Epoxide Hydrogenolysis.

作者信息

Borden Olivia J, Joseph Benjamin T, Head Marianna C, Ammons Obsidian A, Kim Diane Eun, Bonino Abigail C, Keith Jason M, Chianese Anthony R

机构信息

Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States.

出版信息

Organometallics. 2024 Jun 17;43(13):1490-1501. doi: 10.1021/acs.organomet.4c00214. eCollection 2024 Jul 8.

Abstract

In this article, we report the development of ruthenium-catalyzed hydrogenolysis of epoxides to selectively give the branched (Markovnikov) alcohol products. In contrast to previously reported catalysts, the use of Milstein's PNN-pincer-ruthenium complex at room temperature allows the conversion of enantiomerically enriched epoxides to secondary alcohols without racemization of the product. The catalyst is effective for a range of aryl epoxides, alkyl epoxides, and glycidyl ethers and is the first homogeneous system to selectively promote hydrogenolysis of glycidol to 1,2-propanediol, without loss of enantiomeric purity. A detailed mechanistic study was conducted, including experimental observations of catalyst speciation under catalytically relevant conditions, comprehensive kinetic characterization of the catalytic reaction, and computational analysis via density functional theory. Heterolytic hydrogen cleavage is mediated by the ruthenium center and exogenous alkoxide base. Epoxide ring opening occurs through an opposite-side attack of the ruthenium hydride on the less-hindered epoxide carbon, giving the branched alcohol product selectively.

摘要

在本文中,我们报道了钌催化环氧化合物氢解以选择性生成支链(马氏)醇产物的进展。与先前报道的催化剂不同,在室温下使用米尔斯坦的PNN钳形钌配合物可使对映体富集的环氧化合物转化为仲醇,而产物不会发生消旋化。该催化剂对一系列芳基环氧化合物、烷基环氧化合物和缩水甘油醚均有效,并且是首个能选择性促进缩水甘油氢解为1,2 - 丙二醇且不损失对映体纯度的均相体系。我们进行了详细的机理研究,包括在催化相关条件下对催化剂形态的实验观察、催化反应的全面动力学表征以及通过密度泛函理论进行的计算分析。异裂氢裂解由钌中心和外源醇盐碱介导。环氧环的开环是通过氢化钌对位阻较小的环氧碳进行反式进攻实现的,从而选择性地生成支链醇产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ee/11234370/e2bf8786e67f/om4c00214_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验