Suppr超能文献

钌PNN和PNP钳形配合物催化的马氏选择性环氧化物氢解反应机理

The Mechanism of Markovnikov-Selective Epoxide Hydrogenolysis Catalyzed by Ruthenium PNN and PNP Pincer Complexes.

作者信息

Head Marianna C, Joseph Benjamin T, Keith Jason M, Chianese Anthony R

机构信息

Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States.

出版信息

Organometallics. 2023 Feb 27;42(5):347-356. doi: 10.1021/acs.organomet.2c00503. eCollection 2023 Mar 13.

Abstract

The homogeneous catalysis of epoxide hydrogenolysis to give alcohols has recently received significant attention. Catalyst systems have been developed for the selective formation of either the Markovnikov (branched) or anti-Markovnikov (linear) alcohol product. Thus far, the reported catalysts exhibiting Markovnikov selectivity all feature the potential for Noyori/Shvo-type bifunctional catalysis, with either a RuH/NH or FeH/OH core structure. The proposed mechanisms of epoxide ring-opening have involved cooperative C-O bond hydrogenolysis involving the metal hydride and the acidic pendant group on the ligand, in analogy to the well-documented mechanism of polar double-bond hydrogenation exhibited by catalysts of this type. In this work, we present a combined computational/experimental study of the mechanism of epoxide hydrogenolysis catalyzed by Noyori-type PNP and PNN complexes of ruthenium. We find that, at least for these ruthenium systems, the previously proposed bifunctional pathway for epoxide ring-opening is energetically inaccessible; instead, the ring-opening proceeds through opposite-side nucleophilic attack of the ruthenium hydride on the epoxide carbon, without the involvement of the ligand N-H group. For both catalyst systems, the rate law and overall barrier predicted by density functional theory (DFT) are consistent with the results from kinetic studies.

摘要

环氧化物氢解制备醇类的均相催化最近受到了广泛关注。已开发出催化剂体系用于选择性生成马氏(支链)或反马氏(直链)醇产物。到目前为止,报道的具有马氏选择性的催化剂均具有Noyori/Shvo型双功能催化的潜力,具有RuH/NH或FeH/OH核心结构。所提出的环氧化物开环机理涉及金属氢化物和配体上酸性侧基协同进行的C-O键氢解,类似于这类催化剂所展示的极性双键氢化的详细机理。在这项工作中,我们对钌的Noyori型PNP和PNN配合物催化环氧化物氢解的机理进行了计算与实验相结合的研究。我们发现,至少对于这些钌体系而言,先前提出的环氧化物开环双功能途径在能量上是不可行的;相反,开环是通过钌氢化物对环氧化物碳的反侧亲核进攻进行的,而不涉及配体的N-H基团。对于这两种催化剂体系,密度泛函理论(DFT)预测的速率定律和总势垒与动力学研究结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验