Suppr超能文献

在具有挑战性的新生儿重症监护病房环境中实现准确的新生儿面部检测以改进疼痛分类

Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting.

作者信息

Hausmann Jacqueline, Salekin Md Sirajus, Zamzmi Ghada, Mouton Peter R, Prescott Stephanie, Ho Thao, Sun Y U, Goldgof Dmitry

机构信息

Department of Computer Science and Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA.

SRC Biosciences, Tampa, FL 33606, USA.

出版信息

IEEE Access. 2024;12:49122-49133. doi: 10.1109/access.2024.3383789. Epub 2024 Apr 1.

Abstract

There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU. We improved accuracy in this complex scene by training a state-of-the-art "You-Only-Look-Once" (YOLO) face detection model using the USF-MNPAD-I dataset of neonate faces. At run-time our trained YOLO model showed a difference of 8.6% mean Average Precision (mAP) and 21.2% Area under the ROC Curve (AUC) for automatic classification of neonatal pain compared with manual pain scoring by NICU nurses. Given the challenges, time and effort associated with collecting ground truth from the faces of post-surgical neonates, here we share the weights from training our YOLO model with these facial expression data. These weights can facilitate the further development of accurate strategies for detecting facial expression, which can be used to predict the time to pain onset in combination with other sensory modalities (body movements, crying frequency, vital signs). Reliable predictions of time to pain onset in turn create a therapeutic window of time wherein NICU nurses and providers can implement safe and effective strategies to mitigate severe pain in this vulnerable patient population.

摘要

使用现成算法的目标检测系统在部署到复杂场景时往往会失败。目前的工作描述了一种将检测术后新生儿(婴儿)的面部表情作为预测和分类新生儿重症监护病房(NICU)中严重疼痛的一种方式的情况。我们的初步测试表明,现成的面部检测器和在成人面部上训练的机器学习算法都无法检测到NICU中新生儿的面部表情。我们通过使用新生儿面部的USF - MNPAD - I数据集训练最先进的“你只看一次”(YOLO)面部检测模型,提高了在这个复杂场景中的准确性。在运行时,与NICU护士的手动疼痛评分相比,我们训练的YOLO模型在自动分类新生儿疼痛方面平均精度均值(mAP)相差8.6%,ROC曲线下面积(AUC)相差21.2%。鉴于从术后新生儿面部收集真实数据所面临的挑战、时间和精力,在这里我们分享用这些面部表情数据训练我们的YOLO模型的权重。这些权重可以促进准确检测面部表情策略的进一步发展,该策略可与其他感官模式(身体动作、哭泣频率、生命体征)结合使用来预测疼痛发作时间。对疼痛发作时间的可靠预测反过来会创造一个治疗时间窗口,在此期间NICU护士和医护人员可以实施安全有效的策略来减轻这个脆弱患者群体的严重疼痛。

相似文献

1
Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting.
IEEE Access. 2024;12:49122-49133. doi: 10.1109/access.2024.3383789. Epub 2024 Apr 1.
2
Attentional Generative Multimodal Network for Neonatal Postoperative Pain Estimation.
Med Image Comput Comput Assist Interv. 2022 Sep;13433:749-759. doi: 10.1007/978-3-031-16437-8_72. Epub 2022 Sep 16.
3
Performance Evaluation of a Supervised Machine Learning Pain Classification Model Developed by Neonatal Nurses.
Adv Neonatal Care. 2024 Jun 1;24(3):301-310. doi: 10.1097/ANC.0000000000001145. Epub 2024 May 15.
5
Future roles of artificial intelligence in early pain management of newborns.
Paediatr Neonatal Pain. 2021 Aug 5;3(3):134-145. doi: 10.1002/pne2.12060. eCollection 2021 Sep.
7
Neonatal Face and Facial Landmark Detection from Video Recordings.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10340960.
8
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.
10
A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost.
Sensors (Basel). 2021 Aug 10;21(16):5413. doi: 10.3390/s21165413.

引用本文的文献

1
Objective Detection of Newborn Infant Acute Procedural Pain Using EEG and Machine Learning Algorithms.
Paediatr Neonatal Pain. 2025 Mar 10;7(1):e70001. doi: 10.1002/pne2.70001. eCollection 2025 Mar.

本文引用的文献

1
Neonatal Face and Facial Landmark Detection from Video Recordings.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-5. doi: 10.1109/EMBC40787.2023.10340960.
2
Neonatal pain assessment: Do we have the right tools?
Front Pediatr. 2023 Feb 2;10:1022751. doi: 10.3389/fped.2022.1022751. eCollection 2022.
4
Aggregate Channel Features for newborn face detection in Neonatal Intensive Care Units.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:455-458. doi: 10.1109/EMBC48229.2022.9871399.
5
Future roles of artificial intelligence in early pain management of newborns.
Paediatr Neonatal Pain. 2021 Aug 5;3(3):134-145. doi: 10.1002/pne2.12060. eCollection 2021 Sep.
6
RGB-D scene analysis in the NICU.
Comput Biol Med. 2021 Nov;138:104873. doi: 10.1016/j.compbiomed.2021.104873. Epub 2021 Sep 20.
7
Assessing procedural pain in infants: a feasibility study evaluating a point-of-care mobile solution based on automated facial analysis.
Lancet Digit Health. 2021 Oct;3(10):e623-e634. doi: 10.1016/S2589-7500(21)00129-1. Epub 2021 Sep 1.
8
What Facial Features Does the Pediatrician Look to Decide That a Newborn Is Feeling Pain?
Am J Perinatol. 2023 Jun;40(8):851-857. doi: 10.1055/s-0041-1731453. Epub 2021 Jun 30.
9
Multimodal neonatal procedural and postoperative pain assessment dataset.
Data Brief. 2021 Jan 26;35:106796. doi: 10.1016/j.dib.2021.106796. eCollection 2021 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验