Suppr超能文献

优化神经网络在医学数据集上的应用:以新生儿呼吸暂停预测为例的研究

Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.

机构信息

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academcy of Higher Education, Manipal, India.

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academcy of Higher Education, Manipal, India.

出版信息

Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.

Abstract

OBJECTIVE

The neonatal period of a child is considered the most crucial phase of its physical development and future health. As per the World Health Organization, India has the highest number of pre-term births [1], with over 3.5 million babies born prematurely, and up to 40% of them are babies with low birth weights, highly prone to a multitude of diseases such as Jaundice, Sepsis, Apnea, and other Metabolic disorders. Apnea is the primary concern for caretakers of neonates in intensive care units. The real-time medical data is known to be noisy and nonlinear and to address the resultant complexity in classification and prediction of diseases; there is a need for optimizing learning models to maximize predictive performance. Our study attempts to optimize neural network architectures to predict the occurrence of apneic episodes in neonates, after the first week of admission to Neonatal Intensive Care Unit (NICU). The primary contribution of this study is the formulation and description of a set of generic steps involved in selecting various model-specific, training and hyper-parametric optimization algorithms, as well as model architectures for optimal predictive performance on complex and noisy medical datasets.

METHODS

The data used for the study being inherently complex and noisy, Kernel Principal Component Analysis (PCA) is used to reduce dataset dimensionality for the analysis such as interpretations and visualization of the dataset. Hyper-parametric and parametric optimization, in different categories, are considered, including learning rate updater algorithms, regularization methods, activation functions, gradient descent algorithms and depth of the network, based on their performance on the validation set, to obtain a holistically optimized neural network, that best model the given complex medical dataset. Deep Neural Network Architectures such as Deep Multilayer Perceptron's, Stacked Auto-encoders and Deep Belief Networks are employed to model the dataset, and their performance is compared to the optimized neural network obtained from the parametric exploration. Further, the results are compared with Support Vector Machine (SVM), K Nearest Neighbor, Decision Tree (DT) and Random Forest (RF) algorithms.

RESULTS

The results indicate that the optimized eight layer Multilayer Perceptron (MLP) model, with Adam Decay and Stochastic Gradient Descent (AUC 0.82) can outperform the conventional machine learning models, and perform comparably to the Deep Auto-encoder model (AUC 0.83) in predicting the presence of apnea in neonates.

CONCLUSION

The study shows that an MLP model can undergo significant improvements in predictive performance, by the proposed step-wise optimization. The optimized MLP is proved to be as accurate as deep neural network models such as Deep Belief Networks and Deep Auto-encoders for noisy and nonlinear data sets, and outperform all conventional models like Support Vector Machine (SVM), Decision Tree (DT), K Nearest Neighbor and Random Forest (RF) algorithms. The generic nature of the proposed step-wise optimization provides a framework to optimize neural networks on such complex nonlinear datasets. The investigated models can help neonatologists as a diagnostic tool.

摘要

目的

儿童的新生儿期被认为是其身体发育和未来健康的最关键阶段。根据世界卫生组织的数据,印度早产儿的数量最多[1],超过 350 万婴儿早产,其中多达 40%的婴儿体重偏低,极易患上黄疸、败血症、呼吸暂停和其他代谢紊乱等多种疾病。呼吸暂停是重症监护病房新生儿护理人员最关心的问题。众所周知,实时医疗数据存在噪声和非线性,为了解决疾病分类和预测的复杂性,需要优化学习模型以最大限度地提高预测性能。我们的研究旨在优化神经网络架构,以预测新生儿在进入新生儿重症监护病房(NICU)后的第一周内发生呼吸暂停的情况。本研究的主要贡献是制定和描述了一组通用步骤,用于选择各种特定于模型的训练和超参数优化算法以及模型架构,以在复杂和嘈杂的医疗数据集上获得最佳的预测性能。

方法

由于研究中使用的数据本质上是复杂且嘈杂的,因此使用核主成分分析(PCA)来降低数据集的维度,以便对数据集进行解释和可视化等分析。考虑了不同类别中的超参数和参数优化,包括学习率更新算法、正则化方法、激活函数、梯度下降算法和网络深度等,根据它们在验证集上的性能,以获得最佳的整体优化神经网络,从而最好地对给定的复杂医疗数据集进行建模。使用深度神经网络架构,如深度多层感知机、堆叠自动编码器和深度置信网络来对数据集进行建模,并将其性能与从参数探索中获得的优化神经网络进行比较。此外,还将结果与支持向量机(SVM)、K 近邻、决策树(DT)和随机森林(RF)算法进行了比较。

结果

结果表明,经过逐步优化的八层多层感知机(MLP)模型(AUC 0.82)可以优于传统的机器学习模型,并且在预测新生儿呼吸暂停方面的性能可与深度自动编码器模型(AUC 0.83)相媲美。

结论

研究表明,通过提出的逐步优化方法,MLP 模型的预测性能可以得到显著提高。优化后的 MLP 被证明与深度神经网络模型(如深度信念网络和深度自动编码器)一样,可以对嘈杂和非线性数据集进行精确预测,并且优于所有传统模型(如支持向量机(SVM)、决策树(DT)、K 近邻和随机森林(RF)算法)。所提出的逐步优化的通用性质为在这种复杂的非线性数据集上优化神经网络提供了一个框架。所研究的模型可以作为新生儿科医生的诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验