Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing, China.
Front Immunol. 2024 Jun 27;15:1418508. doi: 10.3389/fimmu.2024.1418508. eCollection 2024.
BACKGROUND: Uterine Corpus Endometrial Carcinoma (UCEC) stands as one of the prevalent malignancies impacting women globally. Given its heterogeneous nature, personalized therapeutic approaches are increasingly significant for optimizing patient outcomes. This study investigated the prognostic potential of cellular senescence genes(CSGs) in UCEC, utilizing machine learning techniques integrated with large-scale genomic data. METHODS: A comprehensive analysis was conducted using transcriptomic and clinical data from 579 endometrial cancer patients sourced from the Cancer Genome Atlas (TCGA). A subset of 503 CSGs was assessed through weighted gene co-expression network analysis (WGCNA) alongside machine learning algorithms, including Gaussian Mixture Model (GMM), support vector machine - recursive feature elimination (SVM-RFE), Random Forest, and eXtreme Gradient Boosting (XGBoost), to identify key differentially expressed cellular senescence genes. These genes underwent further analysis to construct a prognostic model. RESULTS: Our analysis revealed two distinct molecular clusters of UCEC with significant differences in tumor microenvironment and survival outcomes. Utilizing cellular senescence genes, a prognostic model effectively stratified patients into high-risk and low-risk categories. Patients in the high-risk group exhibited compromised overall survival and presented distinct molecular and immune profiles indicative of tumor progression. Crucially, the prognostic model demonstrated robust predictive performance and underwent validation in an independent patient cohort. CONCLUSION: The study emphasized the significance of cellular senescence genes in UCEC progression and underscored the efficacy of machine learning in developing reliable prognostic models. Our findings suggested that targeting cellular senescence holds promise as a strategy in personalized UCEC treatment, thus warranting further clinical investigation.
背景:子宫体子宫内膜癌(UCEC)是全球女性常见的恶性肿瘤之一。由于其异质性,个性化的治疗方法对于优化患者的预后越来越重要。本研究利用机器学习技术结合大规模基因组数据,探讨了细胞衰老基因(CSG)在 UCEC 中的预后潜力。
方法:对来自癌症基因组图谱(TCGA)的 579 名子宫内膜癌患者的转录组和临床数据进行了综合分析。通过加权基因共表达网络分析(WGCNA)和机器学习算法(包括高斯混合模型(GMM)、支持向量机-递归特征消除(SVM-RFE)、随机森林和极端梯度提升(XGBoost))评估了 503 个 CSG 子集,以确定关键差异表达的细胞衰老基因。对这些基因进行进一步分析,构建预后模型。
结果:我们的分析揭示了 UCEC 有两个不同的分子簇,在肿瘤微环境和生存结果方面存在显著差异。利用细胞衰老基因,预后模型有效地将患者分为高风险和低风险组。高风险组患者的总生存率较差,表现出不同的分子和免疫特征,提示肿瘤进展。重要的是,该预后模型在独立的患者队列中表现出良好的预测性能,并经过验证。
结论:该研究强调了细胞衰老基因在 UCEC 进展中的重要性,并强调了机器学习在开发可靠预后模型方面的有效性。我们的研究结果表明,靶向细胞衰老可能是一种个性化 UCEC 治疗的策略,值得进一步的临床研究。
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021-10
Comput Intell Neurosci. 2022
Crit Rev Oncol Hematol. 2024-4
Int J Gynecol Cancer. 2024-3-4
Expert Opin Ther Targets. 2024