文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

集成机器学习鉴定出一个与细胞衰老相关的预后模型,以改善子宫体子宫内膜癌的预后。

Integrated machine learning identifies a cellular senescence-related prognostic model to improve outcomes in uterine corpus endometrial carcinoma.

机构信息

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.

Department of Science and Technology Industry, Chongqing Medical and Pharmaceutical College, Chongqing, China.

出版信息

Front Immunol. 2024 Jun 27;15:1418508. doi: 10.3389/fimmu.2024.1418508. eCollection 2024.


DOI:10.3389/fimmu.2024.1418508
PMID:38994352
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11236550/
Abstract

BACKGROUND: Uterine Corpus Endometrial Carcinoma (UCEC) stands as one of the prevalent malignancies impacting women globally. Given its heterogeneous nature, personalized therapeutic approaches are increasingly significant for optimizing patient outcomes. This study investigated the prognostic potential of cellular senescence genes(CSGs) in UCEC, utilizing machine learning techniques integrated with large-scale genomic data. METHODS: A comprehensive analysis was conducted using transcriptomic and clinical data from 579 endometrial cancer patients sourced from the Cancer Genome Atlas (TCGA). A subset of 503 CSGs was assessed through weighted gene co-expression network analysis (WGCNA) alongside machine learning algorithms, including Gaussian Mixture Model (GMM), support vector machine - recursive feature elimination (SVM-RFE), Random Forest, and eXtreme Gradient Boosting (XGBoost), to identify key differentially expressed cellular senescence genes. These genes underwent further analysis to construct a prognostic model. RESULTS: Our analysis revealed two distinct molecular clusters of UCEC with significant differences in tumor microenvironment and survival outcomes. Utilizing cellular senescence genes, a prognostic model effectively stratified patients into high-risk and low-risk categories. Patients in the high-risk group exhibited compromised overall survival and presented distinct molecular and immune profiles indicative of tumor progression. Crucially, the prognostic model demonstrated robust predictive performance and underwent validation in an independent patient cohort. CONCLUSION: The study emphasized the significance of cellular senescence genes in UCEC progression and underscored the efficacy of machine learning in developing reliable prognostic models. Our findings suggested that targeting cellular senescence holds promise as a strategy in personalized UCEC treatment, thus warranting further clinical investigation.

摘要

背景:子宫体子宫内膜癌(UCEC)是全球女性常见的恶性肿瘤之一。由于其异质性,个性化的治疗方法对于优化患者的预后越来越重要。本研究利用机器学习技术结合大规模基因组数据,探讨了细胞衰老基因(CSG)在 UCEC 中的预后潜力。

方法:对来自癌症基因组图谱(TCGA)的 579 名子宫内膜癌患者的转录组和临床数据进行了综合分析。通过加权基因共表达网络分析(WGCNA)和机器学习算法(包括高斯混合模型(GMM)、支持向量机-递归特征消除(SVM-RFE)、随机森林和极端梯度提升(XGBoost))评估了 503 个 CSG 子集,以确定关键差异表达的细胞衰老基因。对这些基因进行进一步分析,构建预后模型。

结果:我们的分析揭示了 UCEC 有两个不同的分子簇,在肿瘤微环境和生存结果方面存在显著差异。利用细胞衰老基因,预后模型有效地将患者分为高风险和低风险组。高风险组患者的总生存率较差,表现出不同的分子和免疫特征,提示肿瘤进展。重要的是,该预后模型在独立的患者队列中表现出良好的预测性能,并经过验证。

结论:该研究强调了细胞衰老基因在 UCEC 进展中的重要性,并强调了机器学习在开发可靠预后模型方面的有效性。我们的研究结果表明,靶向细胞衰老可能是一种个性化 UCEC 治疗的策略,值得进一步的临床研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/e4a7c0d52d2e/fimmu-15-1418508-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/4c390cd4cf2e/fimmu-15-1418508-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/158fe9ccf22b/fimmu-15-1418508-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/fef29e850310/fimmu-15-1418508-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/222272a0f29d/fimmu-15-1418508-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/3dc31d0038a3/fimmu-15-1418508-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/badfaaebe447/fimmu-15-1418508-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/c0af69ca2344/fimmu-15-1418508-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/876b1538a8d1/fimmu-15-1418508-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/2c5bf0676ad5/fimmu-15-1418508-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/e4a7c0d52d2e/fimmu-15-1418508-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/4c390cd4cf2e/fimmu-15-1418508-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/158fe9ccf22b/fimmu-15-1418508-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/fef29e850310/fimmu-15-1418508-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/222272a0f29d/fimmu-15-1418508-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/3dc31d0038a3/fimmu-15-1418508-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/badfaaebe447/fimmu-15-1418508-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/c0af69ca2344/fimmu-15-1418508-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/876b1538a8d1/fimmu-15-1418508-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/2c5bf0676ad5/fimmu-15-1418508-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c6/11236550/e4a7c0d52d2e/fimmu-15-1418508-g010.jpg

相似文献

[1]
Integrated machine learning identifies a cellular senescence-related prognostic model to improve outcomes in uterine corpus endometrial carcinoma.

Front Immunol. 2024

[2]
Development and Clinical Validation of Novel 8-Gene Prognostic Signature Associated With the Proportion of Regulatory T Cells by Weighted Gene Co-Expression Network Analysis in Uterine Corpus Endometrial Carcinoma.

Front Immunol. 2021

[3]
Construction and verification of an endoplasmic reticulum stress-related prognostic model for endometrial cancer based on WGCNA and machine learning algorithms.

Front Oncol. 2024-4-25

[4]
Glycosyltransferase-related prognostic and diagnostic biomarkers of uterine corpus endometrial carcinoma.

Comput Biol Med. 2023-9

[5]
[Dysregulation of MAD2L1/CAMK2A/PTTG1 Gene Cluster Maintains the Stemness Characteristics of Uterine Corpus Endometrial Carcinoma].

Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021-10

[6]
Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma.

Cancer Med. 2018-10-10

[7]
Deciphering the endometrial immune landscape of RIF during the window of implantation from cellular senescence by integrated bioinformatics analysis and machine learning.

Front Immunol. 2022

[8]
A comparative analysis indicates SLC7A11 expression regulate the prognostic value of KEAP1-NFE2L2-CUL3 mutations in human uterine corpus endometrial carcinoma.

Free Radic Biol Med. 2024-9

[9]
Pan-Cancer Gene Analysis of m6A Modification and Immune Infiltration in Uterine Corpus Endometrial Carcinoma.

Comput Intell Neurosci. 2022

[10]
KDM4B, a potential prognostic biomarker revealed by large-scale public databases and clinical samples in uterine corpus endometrial carcinoma.

Mol Omics. 2022-7-11

引用本文的文献

[1]
Cellular senescence in cancer: from mechanism paradoxes to precision therapeutics.

Mol Cancer. 2025-8-8

[2]
Prognostic risk modeling of endometrial cancer using programmed cell death-related genes: a comprehensive machine learning approach.

Discov Oncol. 2025-3-8

本文引用的文献

[1]
Lipids and lipid metabolism in cellular senescence: Emerging targets for age-related diseases.

Ageing Res Rev. 2024-6

[2]
The oncogene MYBL2 promotes the malignant phenotype and suppresses apoptosis through hedgehog signaling pathway in clear cell renal cell carcinoma.

Heliyon. 2024-3-11

[3]
Identification and validation of IRF6 related to ovarian cancer and biological function and prognostic value.

J Ovarian Res. 2024-3-16

[4]
The cytokines in tumor microenvironment: from cancer initiation-elongation-progression to metastatic outgrowth.

Crit Rev Oncol Hematol. 2024-4

[5]
New windows of surgical opportunity for gynecological cancers in the era of targeted therapies.

Int J Gynecol Cancer. 2024-3-4

[6]
Retinoic acid receptor activation reprograms senescence response and enhances anti-tumor activity of natural killer cells.

Cancer Cell. 2024-4-8

[7]
Incorporation of anti-PD1 or anti PD-L1 agents to platinum-based chemotherapy for the primary treatment of advanced or recurrent endometrial cancer. A meta-analysis.

Cancer Treat Rev. 2024-4

[8]
Immune regulation and the tumor microenvironment in anti-PD-1/PDL-1 and anti-CTLA-4 therapies for cancer immune evasion: A bibliometric analysis.

Hum Vaccin Immunother. 2024-12-31

[9]
Identification and validation of serum metabolite biomarkers for endometrial cancer diagnosis.

EMBO Mol Med. 2024-4

[10]
New therapeutic targets for endometrial cancer: a glimpse into the preclinical sphere.

Expert Opin Ther Targets. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索