文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鉴定和验证与卵巢癌相关的 IRF6 及其生物学功能和预后价值。

Identification and validation of IRF6 related to ovarian cancer and biological function and prognostic value.

机构信息

Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.

出版信息

J Ovarian Res. 2024 Mar 16;17(1):64. doi: 10.1186/s13048-024-01386-4.


DOI:10.1186/s13048-024-01386-4
PMID:38493179
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10943877/
Abstract

BACKGROUND: Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic causes. METHODS: The present study used the differentially expressed genes (DEGs) obtained from the "Limma" package and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified-claudin 3 (CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)-by searching for hub genes through the PPI network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC confirmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics tools to predict drug sensitivity. RESULTS: The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion. CONCLUSION: IRF6 is closely correlated with OC development and progression and could be considered a novel biomarker and therapeutic target for OC patients.

摘要

背景:卵巢癌(OC)是一种严重的妇科恶性肿瘤,具有重大的诊断和治疗挑战。发现可靠的癌症生物标志物可用于调整诊断并改善患者的护理。然而,浆液性 OC 缺乏有效的生物标志物。我们旨在确定 OC 的新型生物标志物及其发病原因。

方法:本研究使用来自“Limma”软件包和 WGCNA 模块的差异表达基因(DEGs)进行交集分析,以获得 OC 中的 DEGs。通过搜索 PPI 网络中的枢纽基因并在 GSE14407、GSE18520、GSE66957 和 TCGA+GTEx 数据库中进行验证,确定了三个枢纽基因-紧密连接蛋白 3(CLDN3)、干扰素调节因子 6(IRF6)和蛋白酶 8(PRSS8)。在 Kaplan-Meier Plotter 中进一步确认了 IRF6 与 OC 患者预后的相关性。RT-qPCR 和 IHC 验证了 OC 样本中 IRF6 的 RNA 和蛋白水平。使用 Transwell 侵袭和划痕实验探讨了 IRF6 对 OC 的影响。最后,构建了枢纽基因的 ceRNA 网络,并使用生物信息学工具预测药物敏感性。

结果:TCGA、GTEx 和 GEO 数据库的联合分析结果表明,IRF6 RNA 和蛋白水平在浆液性 OC 中显著上调,与 OS 和 PFS 相关。细胞功能实验表明,IRF6 敲低抑制 SKOV3 细胞增殖、迁移和侵袭。

结论:IRF6 与 OC 的发生发展密切相关,可作为 OC 患者的新型生物标志物和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/a283a9cf08f2/13048_2024_1386_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/9d1b0b8dcc7d/13048_2024_1386_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/dc2bcebfba83/13048_2024_1386_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/10cc50843707/13048_2024_1386_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/dba7fba8cff6/13048_2024_1386_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/d10fa9723170/13048_2024_1386_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/d56356a4bc53/13048_2024_1386_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/16b5837cfba0/13048_2024_1386_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/f3322132b65b/13048_2024_1386_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/a283a9cf08f2/13048_2024_1386_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/9d1b0b8dcc7d/13048_2024_1386_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/dc2bcebfba83/13048_2024_1386_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/10cc50843707/13048_2024_1386_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/dba7fba8cff6/13048_2024_1386_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/d10fa9723170/13048_2024_1386_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/d56356a4bc53/13048_2024_1386_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/16b5837cfba0/13048_2024_1386_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/f3322132b65b/13048_2024_1386_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/10943877/a283a9cf08f2/13048_2024_1386_Fig9_HTML.jpg

相似文献

[1]
Identification and validation of IRF6 related to ovarian cancer and biological function and prognostic value.

J Ovarian Res. 2024-3-16

[2]
Prognostic values and prospective pathway signaling of MicroRNA-182 in ovarian cancer: a study based on gene expression omnibus (GEO) and bioinformatics analysis.

J Ovarian Res. 2019-11-8

[3]
Screening of potential targets and small-molecule drugs related to lipid metabolism in ovarian cancer based on bioinformatics.

Biochem Biophys Res Commun. 2024-11-12

[4]
Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.

J Ovarian Res. 2020-1-27

[5]
Identification of Differentially Expressed Genes (DEGs) Relevant to Prognosis of Ovarian Cancer by Use of Integrated Bioinformatics Analysis and Validation by Immunohistochemistry Assay.

Med Sci Monit. 2019-12-24

[6]
Identification of novel candidate genes and small molecule drugs in ovarian cancer by bioinformatics strategy.

Transl Cancer Res. 2022-6

[7]
Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis.

Med Sci Monit. 2020-3-17

[8]
Prospective pathway signaling and prognostic values of MicroRNA-9 in ovarian cancer based on gene expression omnibus (GEO): a bioinformatics analysis.

J Ovarian Res. 2021-2-9

[9]
Role of the KRT7 Biomarker in Immune Infiltration and Paclitaxel Resistance in Ovarian.

Altern Ther Health Med. 2023-7

[10]
Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis.

J Ovarian Res. 2019-11-15

引用本文的文献

[1]
Prognostic Value of Ubiquitination-Related Genes in Ovarian Cancer and Their Correlation With Tumor Immunity.

Hum Mutat. 2025-7-15

[2]
Identification and validation of matrix metalloproteinase hub genes as potential biomarkers for Skin Cutaneous Melanoma.

Front Oncol. 2024-10-18

[3]
Glioma-associated oncogene homolog 1 in breast invasive carcinoma: a comprehensive bioinformatic analysis and experimental validation.

Front Cell Dev Biol. 2024-10-17

[4]
Exploring the molecular landscape of osteosarcoma through PTTG family genes using a detailed multi-level methodology.

Front Genet. 2024-7-30

[5]
Integrated machine learning identifies a cellular senescence-related prognostic model to improve outcomes in uterine corpus endometrial carcinoma.

Front Immunol. 2024

[6]
Identification and validation of immunity- and disulfidptosis-related genes signature for predicting prognosis in ovarian cancer.

Heliyon. 2024-6-7

本文引用的文献

[1]
Comparative analysis between highgrade serous ovarian cancer and healthy ovarian tissues using single-cell RNA sequencing.

Front Oncol. 2023-4-14

[2]
Validation of ESM1 Related to Ovarian Cancer and the Biological Function and Prognostic Significance.

Int J Biol Sci. 2023

[3]
Claudin-3 inhibits tumor-induced lymphangiogenesis via regulating the PI3K signaling pathway in lymphatic endothelial cells.

Sci Rep. 2022-10-19

[4]
Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments.

Cancers (Basel). 2022-2-16

[5]
Exploiting systems biology to investigate the gene modules and drugs in ovarian cancer: A hypothesis based on the weighted gene co-expression network analysis.

Biomed Pharmacother. 2022-2

[6]
Knocking down Sterol regulatory element binding protein 2 (SREBF2) inhibits the Serine Protease 8 (PRSS8) /sodium channel epithelial 1alpha subunit (SCNN1A) axis to reduce the cell proliferation, migration and epithelial-mesenchymal transformation of ovarian cancer.

Bioengineered. 2021-12

[7]
Long non-coding RNA FOXD2-AS1 promotes proliferation, migration and invasion of ovarian cancer cells via regulating the expression of miR-4492.

Exp Ther Med. 2021-4

[8]
MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer.

J Exp Clin Cancer Res. 2020-12-14

[9]
Tooth agenesis: What do we know and is there a connection to cancer?

Clin Genet. 2021-4

[10]
ZDHHC12-mediated claudin-3 -palmitoylation determines ovarian cancer progression.

Acta Pharm Sin B. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索