Sharma Sunita, Pandey Bhawana, Rajaraman Gopalan
Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
Chem Sci. 2024 Jun 3;15(27):10529-10540. doi: 10.1039/d4sc02882a. eCollection 2024 Jul 10.
Dinickel dichalcogenide complexes hold vital multifaceted significance across catalysis, electron transfer, magnetism, materials science, and energy conversion. Understanding their structure, bonding, and reactivity is crucial for all aforementioned applications. These complexes are classified as dichalcogenide, subchalcogenide, or chalcogenide based on metal oxidation and coordinated chalcogen, and due to the associated complex electronic structure, ambiguity often lingers about their classification. In this work, using DFT, CASSCF/NEVPT2, and DLPNO-CCSD(T) methods, we have studied in detail [(NiL)(E)] ( = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane; E = O, S, Se and Te) complexes and explored their reactivity towards C-H bond activation for the first time. Through a comprehensive analysis of the structure, bonding, and reactivity of a series of [(NiL)(E)] complexes with E = O, S, Se, and Te, our computational findings suggest that {NiO} and {NiS} are best categorised as dichalcogenide-type complexes. In contrast, {NiSe} and {NiTe} display tendencies consistent with the subchalcogenide classification, and this aligns with the earlier structural correlation proposed (Berry and co-workers, 2015, 137, 4993) reports on the importance of the E-E bond strength. Our study suggests the reactivity order of {NiO} > {NiS} > {NiSe} > {NiTe} for C-H bond activation, and the origin of the difference in reactivity was attributed to the difference in the Ni-E bond covalency, and electronic cooperativity between two Ni centres that switch among the classification during the reaction. Further non-adiabatic analysis at the C-H bond activation step demonstrates a decrease in coupling strength as we progress down the group, indicating a correlation with metal-ligand covalency. Notably, the reactivity trend is found to be correlated to the strength of the antiferromagnetic exchange coupling constant developing a magneto-structural-barrier map - offering a hitherto unknown route to fine-tune the reactivity of this important class of compound.
二镍二硫属化合物配合物在催化、电子转移、磁性、材料科学和能量转换等领域具有至关重要的多方面意义。了解它们的结构、键合和反应性对于上述所有应用都至关重要。这些配合物根据金属氧化态和配位硫属元素被分类为二硫属化合物、亚硫属化合物或硫属化合物,并且由于相关的复杂电子结构,它们的分类常常存在模糊性。在这项工作中,我们使用密度泛函理论(DFT)、完全活性空间自洽场/二阶微扰理论(CASSCF/NEVPT2)和密度拟合局域二阶微扰理论(DLPNO - CCSD(T))方法,详细研究了[(NiL)(E)](L = 1,4,7,10 - 四甲基 - 1,4,7,10 - 四氮杂环十二烷;E = O、S、Se和Te)配合物,并首次探索了它们对C - H键活化的反应性。通过对一系列E = O、S、Se和Te的[(NiL)(E)]配合物的结构、键合和反应性进行全面分析,我们的计算结果表明{NiO}和{NiS}最好归类为二硫属化合物型配合物。相比之下,{NiSe}和{NiTe}表现出与亚硫属化合物分类一致的趋势,这与之前提出的结构相关性(Berry及其同事,2015年,137卷,4993页)中关于E - E键强度的重要性相符。我们的研究表明,对于C - H键活化,{NiO} > {NiS} > {NiSe} > {NiTe}的反应活性顺序,反应活性差异的起源归因于Ni - E键共价性的差异,以及在反应过程中两个Ni中心之间在分类之间切换的电子协同作用。在C - H键活化步骤进行的进一步非绝热分析表明,随着我们沿着元素周期表向下移动,耦合强度降低,这表明与金属 - 配体共价性相关。值得注意的是,发现反应活性趋势与反铁磁交换耦合常数的强度相关,从而绘制出磁结构势垒图——为微调这类重要化合物的反应活性提供了一条迄今未知的途径。