Suppr超能文献

用于单组分和双组分相对论全电子计算的双ζ和三ζ价层质量的分段收缩误差一致基组。

Segmented Contracted Error-Consistent Basis Sets of Double- and Triple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations.

作者信息

Pollak Patrik, Weigend Florian

机构信息

Institut für Physikalische Chemie, Abteilung für Theoretische Chemie, Karlsruher Institut für Technologie , Kaiserstraße 12, 76131 Karlsruhe, Germany.

Institut für Nanotechnologie, Karlsruher Institut für Technologie , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

出版信息

J Chem Theory Comput. 2017 Aug 8;13(8):3696-3705. doi: 10.1021/acs.jctc.7b00593. Epub 2017 Jul 17.

Abstract

Segmented contracted Gaussian basis sets optimized at the one-electron exact two-component (X2C) level - including a finite size model for the nucleus - are presented for elements up to Rn. These basis sets are counterparts for relativistic all-electron calculations to the Karlsruhe "def2" basis sets for nonrelativistic (H-Kr) or effective core potential based (Rb-Rn) treatments. For maximum consistency, the bases presented here were obtained from the latter by modification and reoptimization. Additionally we present extensions for self-consistent two-component calculations, required for the splitting of inner shells by spin-orbit coupling, and auxiliary basis sets for fitting the Coulomb part of the Fock matrix. Emphasis was put both on the accuracy of energies of atomic orbitals and on the accuracy of molecular properties. A large set of more than 300 molecules representing (nearly) all elements in their common oxidation states was used to assess the quality of the bases all across the periodic table.

摘要

本文给出了在单电子精确二分量(X2C)水平下优化的分段收缩高斯基组——包括原子核的有限尺寸模型,适用于直至Rn的元素。这些基组是相对论全电子计算的对应物,类似于用于非相对论(H - Kr)或基于有效核势(Rb - Rn)处理的卡尔斯鲁厄“def2”基组。为了实现最大程度的一致性,这里给出的基组是通过对后者进行修改和重新优化得到的。此外,我们还给出了用于自洽二分量计算的扩展基组(这是自旋轨道耦合分裂内壳层所必需的)以及用于拟合福克矩阵库仑部分的辅助基组。重点既放在了原子轨道能量的准确性上,也放在了分子性质的准确性上。使用了一大组代表(几乎)所有元素常见氧化态的300多个分子来评估整个周期表中这些基组的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验