Puthirath Balan Aravind, Kumar Aditya, Reiser Patrick, Vimal Vas Joseph, Denneulin Thibaud, Lee Khoa Dang, Saunderson Tom G, Tschudin Märta, Pellet-Mary Clement, Dutta Debarghya, Schrader Carolin, Scholz Tanja, Geuchies Jaco, Fu Shuai, Wang Hai, Bonanni Alberta, Lotsch Bettina V, Nowak Ulrich, Jakob Gerhard, Gayles Jacob, Kovacs Andras, Dunin-Borkowski Rafal E, Maletinsky Patrick, Kläui Mathias
Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128, Mainz, Germany.
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland.
Adv Mater. 2024 Aug;36(35):e2403685. doi: 10.1002/adma.202403685. Epub 2024 Jul 12.
The exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging. This study investigates the origin of exchange bias in MnPS/FeGeTe van der Waals heterostructures, demonstrating a method to modulate nearly 1000% variation in magnitude through simple thermal cycling. Despite the compensated interfacial spin configuration of MnPS, a substantial 170 mT exchange bias is observed at 5 K, one of the largest observed in van der Waals heterostructures. This significant exchange bias is linked to anomalous weak ferromagnetic ordering in MnPS below 40 K. The tunability of exchange bias during thermal cycling is attributed to the amorphization and changes in the van der Waals gap during field cooling. The findings highlight a robust and adjustable exchange bias in van der Waals heterostructures, presenting a straightforward method to enhance other interface-related spintronic phenomena for practical applications. Detailed interface analysis reveals atom migration between layers, forming amorphous regions on either side of the van der Waals gap, emphasizing the importance of precise interface characterization in these heterostructures.
交换偏置现象存在于交换耦合的铁磁和反铁磁系统中,几十年来一直吸引着研究人员。具有层状结构的范德华材料为探索交换偏置提供了一个理想的平台。然而,在范德华异质结构中有效地操纵交换偏置仍然具有挑战性。本研究调查了MnPS/FeGeTe范德华异质结构中交换偏置的起源,展示了一种通过简单的热循环来调节幅度近1000%变化的方法。尽管MnPS的界面自旋构型是补偿性的,但在5 K时仍观察到高达170 mT的显著交换偏置,这是在范德华异质结构中观察到的最大交换偏置之一。这种显著的交换偏置与40 K以下MnPS中异常的弱铁磁有序有关。热循环过程中交换偏置的可调性归因于场冷过程中范德华间隙的非晶化和变化。这些发现突出了范德华异质结构中强大且可调节的交换偏置,为实际应用中增强其他与界面相关的自旋电子现象提供了一种直接的方法。详细的界面分析揭示了层间的原子迁移,在范德华间隙两侧形成了非晶区域,强调了这些异质结构中精确界面表征的重要性。