Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged, Hódmezővásárhely, Hungary.
University of Trento, Trento, Italy.
Allergy. 2024 Aug;79(8):2173-2185. doi: 10.1111/all.16227. Epub 2024 Jul 12.
There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.
The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.
The best pollen forecasts include Mexico City (R(DL_7) ≈ .7), and Santiago (R(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R(DL_7) ≈ .4) and Seoul (R(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.
This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
有证据表明,全球人为气候变化可能正在影响花卉物候和空气过敏原花粉的时间和空间特征。鉴于当前和未来气候的不确定性程度,有必要加强预测花粉预报。
本研究旨在使用 CatBoost(CB)和深度学习(DL)模型,对 23 个城市的每日总花粉浓度进行预测,提前 14 天,覆盖所有五个大陆。该模型包括预测的环境参数、最近的浓度(1、2 和 4 周)以及过去的环境解释变量及其未来值。
最佳花粉预报包括墨西哥城(R(DL_7)≈.7)和圣地亚哥(R(DL_7)≈.8),分别为第 7 天的预报;而布里斯班(R(DL_7)≈.4)和首尔(R(DL_7)≈.1)的花粉预报最弱。决定每日总花粉浓度的五个最重要环境变量的全球顺序,按降序排列:过去的每日总花粉浓度、未来的 2m 温度、过去的 2m 温度、过去的 28-100cm 土壤温度和过去的 0-7cm 土壤温度。根据聚类、城市和预测日,环境变量特征重要值最相似分布的城市相关聚类变化很小,而对于悉尼、圣地亚哥和釜山,这些聚类则经常变化。
根据聚类、城市和预测日,对花粉预报模型具有重要生态关系的最重要变量的重要性的新知识对于开发和提高空气传播花粉预报的准确性非常重要。