Zielińska J A, van der Laan F, Norrman A, Reimann R, Frimmer M, Novotny L
Photonics Laboratory, <a href="https://ror.org/05a28rw58">ETH Zürich</a>, CH-8093 Zürich, Switzerland.
Center for Nanophotonics, <a href="https://ror.org/038x9td67">AMOLF</a>, 1098 XG Amsterdam, The Netherlands.
Phys Rev Lett. 2024 Jun 21;132(25):253601. doi: 10.1103/PhysRevLett.132.253601.
An elongated object can be rotated around one of its short axes, like a propeller, or around its long axis, like a spinning top. Using optically levitated nanoparticles, short-axis rotation and libration have been systematically investigated in several recent studies. Notably, short-axis rotational degrees of freedom have been cooled to millikelvin temperatures and driven into gigahertz rotational speeds. However, controlled long-axis spinning has so far remained an unrealized goal. Here, we demonstrate controlled long-axis spinning of an optically levitated nanodumbbell with spinning rates exceeding 1 GHz. We show that the damping rate in high vacuum can be as low as a few millihertz. Our results open up applications in inertial torque sensing and studies of rotational quantum interference.
一个细长物体可以绕其短轴之一旋转,如螺旋桨那样,或者绕其长轴旋转,如陀螺那样。利用光悬浮纳米粒子,近期的几项研究对短轴旋转和平动进行了系统研究。值得注意的是,短轴旋转自由度已被冷却到毫开尔文温度,并被驱动到千兆赫的旋转速度。然而,可控的长轴旋转迄今为止仍是一个未实现的目标。在此,我们展示了对一个光悬浮纳米哑铃的可控长轴旋转,其旋转速率超过1吉赫。我们表明,在高真空中的阻尼率可低至几毫赫兹。我们的结果开启了在惯性扭矩传感和旋转量子干涉研究中的应用。