Suppr超能文献

不可定向流形上的外尔点。

Weyl Points on Nonorientable Manifolds.

作者信息

Fonseca André Grossi, Vaidya Sachin, Christensen Thomas, Rechtsman Mikael C, Hughes Taylor L, Soljačić Marin

机构信息

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

出版信息

Phys Rev Lett. 2024 Jun 28;132(26):266601. doi: 10.1103/PhysRevLett.132.266601.

Abstract

Weyl fermions are hypothetical chiral particles that can also manifest as excitations near three-dimensional band crossing points in lattice systems. These quasiparticles are subject to the Nielsen-Ninomiya "no-go" theorem when placed on a lattice, requiring the total chirality across the Brillouin zone to vanish. This constraint results from the topology of the (orientable) manifold on which they exist. Here, we ask to what extent the concepts of topology and chirality of Weyl points remain well defined when the underlying manifold is nonorientable. We show that the usual notion of chirality becomes ambiguous in this setting, allowing for systems with a nonzero total chirality. This circumvention of the Nielsen-Ninomiya theorem stems from a generic discontinuity of the vector field whose zeros are Weyl points. Furthermore, we discover that Weyl points on nonorientable manifolds carry an additional Z_{2} topological invariant which satisfies a different no-go theorem. We implement such Weyl points by imposing a nonsymmorphic symmetry in the momentum space of lattice models. Finally, we experimentally realize all aspects of their phenomenology in a photonic platform with synthetic momenta. Our work highlights the subtle but crucial interplay between the topology of quasiparticles and of their underlying manifold.

摘要

外尔费米子是一种假设的手性粒子,在晶格系统中也可表现为三维能带交叉点附近的激发态。当这些准粒子置于晶格上时,它们受尼尔森 - 二宫“不可行”定理的限制,该定理要求整个布里渊区的总手性消失。这种限制源于它们所存在的(可定向)流形的拓扑结构。在此,我们探讨当基础流形不可定向时,外尔点的拓扑和手性概念在多大程度上仍然定义明确。我们表明,在这种情况下,通常的手性概念变得模糊不清,从而允许存在总手性不为零的系统。对尼尔森 - 二宫定理的这种规避源于其零点为外尔点的矢量场的一般不连续性。此外,我们发现不可定向流形上的外尔点携带一个额外的Z₂拓扑不变量,该不变量满足一个不同的“不可行”定理。我们通过在晶格模型的动量空间中施加非对称对称来实现这种外尔点。最后,我们在具有合成动量的光子平台上通过实验实现了它们现象学的所有方面。我们的工作突出了准粒子拓扑与其基础流形拓扑之间微妙而关键的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验