Suppr超能文献

用于周围神经再生的支架设计考虑因素。

Scaffold design considerations for peripheral nerve regeneration.

机构信息

Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America.

Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China.

出版信息

J Neural Eng. 2024 Jul 23;21(4). doi: 10.1088/1741-2552/ad628d.

Abstract

Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.

摘要

周围神经损伤(PNI)是一个严重的临床和公共卫生问题,因为它的高发生率和较差的自发恢复。与自体移植物相比,自体移植物仍然是临床中长间隙周围神经缺损的最佳当前实践,聚合物基可生物降解神经引导导管(NGC)的使用作为替代物,在不需要二次手术和供体神经组织的情况下,引导严重 PNI 的修复,已经越来越受到关注。然而,简单的空心圆柱管在再生效率方面,尤其是在临界尺寸的 PNI 中,几乎无法超过自体移植物。随着组织工程技术和材料科学的快速发展,在过去几十年中,各种功能化的 NGC 已经出现,以增强神经再生。从支架设计考虑的角度来看,本综述特别关注可生物降解聚合物,旨在通过解决生物材料选择、结构设计和制造技术的艰巨要求来总结 NGC 的最新进展,这些要求有助于提高 NGC 的生物相容性、降解率、机械性能、药物包封和释放效率、免疫调节、血管生成以及 NGC 的整体神经再生潜力。此外,还比较和讨论了几种市售的 NGC 及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的 NGC 的未来设计提供灵感,以完全治愈长间隙周围神经缺损。

相似文献

1
Scaffold design considerations for peripheral nerve regeneration.
J Neural Eng. 2024 Jul 23;21(4). doi: 10.1088/1741-2552/ad628d.
2
[Research progress on silk fibroin-nerve guidance conduits for peripheral nerve injury repair].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2025 Jun 15;39(6):777-782. doi: 10.7507/1002-1892.202504070.
3
Silk fibroin-hyaluronic acid nanofibers for peripheral nerve regeneration.
J Biomater Appl. 2025 Aug;40(2):307-323. doi: 10.1177/08853282251329315. Epub 2025 Mar 25.
4
Bioengineered nerve conduits and wraps for peripheral nerve repair of the upper limb.
Cochrane Database Syst Rev. 2022 Dec 7;12(12):CD012574. doi: 10.1002/14651858.CD012574.pub2.
5
Research progress on composite nerve guidance conduits with immune-regulatory functions.
Front Immunol. 2025 Jun 10;16:1622508. doi: 10.3389/fimmu.2025.1622508. eCollection 2025.
6
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.
Int J Nanomedicine. 2025 Jun 17;20:7653-7683. doi: 10.2147/IJN.S522198. eCollection 2025.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
9
A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds.
Biomaterials. 2012 Nov;33(32):8034-9. doi: 10.1016/j.biomaterials.2012.07.056. Epub 2012 Aug 11.
10
Vat photo-polymerization 3D printing of gradient scaffolds for osteochondral tissue regeneration.
Acta Biomater. 2025 Jun 15;200:67-86. doi: 10.1016/j.actbio.2025.05.042. Epub 2025 May 23.

引用本文的文献

1
The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration.
Biomater Transl. 2024 Sep 28;5(3):236-256. doi: 10.12336/biomatertransl.2024.03.003. eCollection 2024.

本文引用的文献

2
Nerve Defect Treatment with a Capping Hydroxyethyl Cellulose/Soy Protein Isolate Sponge Conduit for Painful Neuroma Prevention.
ACS Omega. 2023 Aug 17;8(34):30850-30858. doi: 10.1021/acsomega.3c00613. eCollection 2023 Aug 29.
4
Li-Mg-Si bioceramics provide a dynamic immuno-modulatory and repair-supportive microenvironment for peripheral nerve regeneration.
Bioact Mater. 2023 May 30;28:227-242. doi: 10.1016/j.bioactmat.2023.05.013. eCollection 2023 Oct.
5
Structure and Properties of Gelatin Methacryloyl (GelMA) Synthesized in Different Reaction Systems.
Biomacromolecules. 2023 Jun 12;24(6):2928-2941. doi: 10.1021/acs.biomac.3c00302. Epub 2023 May 22.
7
Effect of Electrical Stimulation on Nerve-Guided Facial Nerve Regeneration.
ACS Biomater Sci Eng. 2023 Jun 12;9(6):3512-3521. doi: 10.1021/acsbiomaterials.3c00222. Epub 2023 May 1.
9
Photocrosslinkable natural polymers in tissue engineering.
Front Bioeng Biotechnol. 2023 Mar 2;11:1127757. doi: 10.3389/fbioe.2023.1127757. eCollection 2023.
10
Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury.
Environ Epigenet. 2023 Jan 17;9(1):dvad002. doi: 10.1093/eep/dvad002. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验