Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America.
Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China.
J Neural Eng. 2024 Jul 23;21(4). doi: 10.1088/1741-2552/ad628d.
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
周围神经损伤(PNI)是一个严重的临床和公共卫生问题,因为它的高发生率和较差的自发恢复。与自体移植物相比,自体移植物仍然是临床中长间隙周围神经缺损的最佳当前实践,聚合物基可生物降解神经引导导管(NGC)的使用作为替代物,在不需要二次手术和供体神经组织的情况下,引导严重 PNI 的修复,已经越来越受到关注。然而,简单的空心圆柱管在再生效率方面,尤其是在临界尺寸的 PNI 中,几乎无法超过自体移植物。随着组织工程技术和材料科学的快速发展,在过去几十年中,各种功能化的 NGC 已经出现,以增强神经再生。从支架设计考虑的角度来看,本综述特别关注可生物降解聚合物,旨在通过解决生物材料选择、结构设计和制造技术的艰巨要求来总结 NGC 的最新进展,这些要求有助于提高 NGC 的生物相容性、降解率、机械性能、药物包封和释放效率、免疫调节、血管生成以及 NGC 的整体神经再生潜力。此外,还比较和讨论了几种市售的 NGC 及其调节途径和临床应用。最后,我们讨论了当前的挑战和未来的方向,试图为理想的 NGC 的未来设计提供灵感,以完全治愈长间隙周围神经缺损。
J Neural Eng. 2024-7-23
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2025-6-15
J Biomater Appl. 2025-8
Cochrane Database Syst Rev. 2022-12-7
Front Immunol. 2025-6-10
Arch Ital Urol Androl. 2025-6-30
Biomacromolecules. 2023-6-12
ACS Biomater Sci Eng. 2023-6-12
Front Bioeng Biotechnol. 2023-3-2
Environ Epigenet. 2023-1-17