Suppr超能文献

MFS-DBF:一种用于阻塞性睡眠呼吸暂停检测的可靠多通道特征筛选和决策边界制定系统。

MFS-DBF: A trustworthy multichannel feature sieve and decision boundary formulation system for Obstructive Sleep Apnea detection.

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.

School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.

出版信息

Comput Biol Med. 2024 Sep;179:108842. doi: 10.1016/j.compbiomed.2024.108842. Epub 2024 Jul 13.

Abstract

The fine identification of sleep apnea events is instrumental in Obstructive Sleep Apnea (OSA) diagnosis. The development of sleep apnea event detection algorithms based on polysomnography is becoming a research hotspot in medical signal processing. In this paper, we propose an Inverse-Projection based Visualization System (IPVS) for sleep apnea event detection algorithms. The IPVS consists of a feature dimensionality reduction module and a feature reconstruction module. First, features of blood oxygen saturation and nasal airflow are extracted and used as input data for event analysis. Then, visual analysis is conducted on the feature distribution for apnea events. Next, dimensionality reduction and reconstruction methods are combined to achieve the dynamic visualization of sleep apnea event feature sets and the visual analysis of classifier decision boundaries. Moreover, the decision-making consistency is explored for various sleep apnea event detection classifiers, which provides researchers and users with an intuitive understanding of the detection algorithm. We applied the IPVS to an OSA detection algorithm with an accuracy of 84% and a diagnostic accuracy of 92% on a publicly available dataset. The experimental results show that the consistency between our visualization results and prior medical knowledge provides strong evidence for the practicality of the proposed system. For clinical practice, the IPVS can guide users to focus on samples with higher uncertainty presented by the OSA detection algorithm, reducing the workload and improving the efficiency of clinical diagnosis, which in turn increases the value of trust.

摘要

睡眠呼吸暂停事件的精细识别是阻塞性睡眠呼吸暂停(OSA)诊断的关键。基于多导睡眠图的睡眠呼吸暂停事件检测算法的开发正在成为医学信号处理领域的研究热点。在本文中,我们提出了一种基于反投影的可视化系统(IPVS),用于睡眠呼吸暂停事件检测算法。IPVS 由特征降维模块和特征重构模块组成。首先,提取血氧饱和度和鼻气流特征作为事件分析的输入数据。然后,对呼吸暂停事件的特征分布进行可视化分析。接下来,结合降维和重构方法,实现睡眠呼吸暂停事件特征集的动态可视化和分类器决策边界的可视化分析。此外,还探索了各种睡眠呼吸暂停事件检测分类器的决策一致性,为研究人员和用户提供了对检测算法的直观理解。我们将 IPVS 应用于一个在公开数据集上准确率为 84%、诊断准确率为 92%的 OSA 检测算法。实验结果表明,我们的可视化结果与先前医学知识之间的一致性为所提出系统的实用性提供了有力证据。对于临床实践,IPVS 可以指导用户关注 OSA 检测算法呈现的更高不确定性的样本,从而减少工作量,提高临床诊断效率,进而提高可信度的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验