Department of Community Medicine, Information and Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
Center for Health Technology and Services Research, Porto, Portugal.
J Med Internet Res. 2022 Sep 30;24(9):e39452. doi: 10.2196/39452.
American Academy of Sleep Medicine guidelines suggest that clinical prediction algorithms can be used to screen patients with obstructive sleep apnea (OSA) without replacing polysomnography, the gold standard.
We aimed to identify, gather, and analyze existing machine learning approaches that are being used for disease screening in adult patients with suspected OSA.
We searched the MEDLINE, Scopus, and ISI Web of Knowledge databases to evaluate the validity of different machine learning techniques, with polysomnography as the gold standard outcome measure and used the Prediction Model Risk of Bias Assessment Tool (Kleijnen Systematic Reviews Ltd) to assess risk of bias and applicability of each included study.
Our search retrieved 5479 articles, of which 63 (1.15%) articles were included. We found 23 studies performing diagnostic model development alone, 26 with added internal validation, and 14 applying the clinical prediction algorithm to an independent sample (although not all reporting the most common discrimination metrics, sensitivity or specificity). Logistic regression was applied in 35 studies, linear regression in 16, support vector machine in 9, neural networks in 8, decision trees in 6, and Bayesian networks in 4. Random forest, discriminant analysis, classification and regression tree, and nomogram were each performed in 2 studies, whereas Pearson correlation, adaptive neuro-fuzzy inference system, artificial immune recognition system, genetic algorithm, supersparse linear integer models, and k-nearest neighbors algorithm were each performed in 1 study. The best area under the receiver operating curve was 0.98 (0.96-0.99) for age, waist circumference, Epworth Somnolence Scale score, and oxygen saturation as predictors in a logistic regression.
Although high values were obtained, they still lacked external validation results in large cohorts and a standard OSA criteria definition.
PROSPERO CRD42021221339; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=221339.
美国睡眠医学学会指南建议,可以使用临床预测算法来筛选阻塞性睡眠呼吸暂停(OSA)患者,而无需替代金标准多导睡眠图。
我们旨在确定、收集和分析目前用于疑似 OSA 成年患者疾病筛查的现有机器学习方法。
我们检索了 MEDLINE、Scopus 和 ISI Web of Knowledge 数据库,以评估不同机器学习技术的有效性,以多导睡眠图作为金标准结局测量,并使用预测模型风险偏倚评估工具(Kleijnen 系统评价有限公司)来评估纳入研究的偏倚风险和适用性。
我们的搜索共检索到 5479 篇文章,其中 63 篇(1.15%)文章被纳入。我们发现 23 项研究仅进行了诊断模型开发,26 项研究增加了内部验证,14 项研究将临床预测算法应用于独立样本(尽管并非所有研究都报告了最常见的区分指标、敏感性或特异性)。35 项研究应用了逻辑回归,16 项研究应用了线性回归,9 项研究应用了支持向量机,8 项研究应用了神经网络,6 项研究应用了决策树,4 项研究应用了贝叶斯网络。随机森林、判别分析、分类回归树和列线图各有 2 项研究,而 Pearson 相关、自适应神经模糊推理系统、人工免疫识别系统、遗传算法、超稀疏线性整数模型和 K 最近邻算法各有 1 项研究。逻辑回归中,年龄、腰围、Epworth 嗜睡量表评分和氧饱和度作为预测因子的最佳受试者工作特征曲线下面积为 0.98(0.96-0.99)。
尽管获得了较高的值,但它们仍然缺乏在大样本队列中进行的外部验证结果,以及一个标准的 OSA 标准定义。
PROSPERO CRD42021221339;https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=221339。