Després Arthur, Parent Salomé, Véron Muriel, Rauch Edgar F, Joulain Anne, Bahsoun Hadi, Tromas Christophe
Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France.
Intitut Pprime, Département de Physique et Mécanique des Matériaux, UPR 3346 CNRS - Universite de Poitiers - ENSMA, 11 Bd Marie et Pierre Curie, Site du Futuroscope, TSA 41123, Poitiers 86073 CEDEX 9, France.
Ultramicroscopy. 2024 Nov;265:114010. doi: 10.1016/j.ultramic.2024.114010. Epub 2024 Jul 7.
A method for mapping elastic strains by TEM in plastically deformed materials is presented. A characteristic feature of plastically deformed materials, which cannot be handled by standard strain measurement method, is the presence of orientation gradients. To circumvent this issue, we couple orientation and strain maps obtained from scanning precession electron diffraction datasets. More specifically, orientation gradients are taken into account by 1) identifying the diffraction spot positions in a reference pattern, 2) measuring the disorientation between the diffraction patterns in the map and the reference pattern, 3) rotating the coordinate system following the measured disorientation at each position in the map, 4) calculating strains in the rotated coordinate system. At present, only azimuthal rotations of the crystal are handled. The method is illustrated on a CrAlC monocrystal micropilar deformed in near simple flexion during a nanomechanical test. After plastic deformation, the sample contains dislocations arranged in pile-ups and walls. The strain-field around each dislocation is consistent with theory, and a clear difference is observed between the strain fields around pile-ups and walls. It is further remarked that strain maps allow for the orientation of the Burgers vector to be identified. Since the loading undergone by the sample is known, this also allows for the position of the dislocation sources to be estimated. Perspectives for the study of deformed materials are finally discussed.
本文提出了一种通过透射电子显微镜(TEM)对塑性变形材料中的弹性应变进行映射的方法。塑性变形材料的一个特征是存在取向梯度,这是标准应变测量方法无法处理的。为了解决这个问题,我们将从扫描进动电子衍射数据集获得的取向和应变图进行了耦合。更具体地说,通过以下步骤考虑取向梯度:1)在参考图案中识别衍射斑点位置;2)测量图中衍射图案与参考图案之间的取向差;3)在图中的每个位置按照测量的取向差旋转坐标系;4)在旋转后的坐标系中计算应变。目前,该方法仅处理晶体的方位旋转。通过对在纳米力学测试中近简单弯曲变形的CrAlC单晶微柱体进行说明展示了该方法。塑性变形后,样品中包含排列成堆积和壁状的位错。每个位错周围的应变场与理论一致,并且在堆积和壁周围的应变场之间观察到明显差异。还进一步指出,应变图允许识别柏氏矢量的取向。由于已知样品所经历的加载,这也允许估计位错源的位置。最后讨论了研究变形材料的前景。