Suppr超能文献

ACP-PDAFF:用于抗癌肽预测的预训练模型和双通道注意力特征融合。

ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction.

机构信息

Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.

Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.

出版信息

Comput Biol Chem. 2024 Oct;112:108141. doi: 10.1016/j.compbiolchem.2024.108141. Epub 2024 Jul 3.

Abstract

Anticancer peptides(ACPs) have attracted significant interest as a novel method of treating cancer due to their ability to selectively kill cancer cells without damaging normal cells. Many artificial intelligence-based methods have demonstrated impressive performance in predicting ACPs. Nevertheless, the limitations of existing methods in feature engineering include handcrafted features driven by prior knowledge, insufficient feature extraction, and inefficient feature fusion. In this study, we propose a model based on a pretrained model, and dual-channel attentional feature fusion(DAFF), called ACP-PDAFF. Firstly, to reduce the heavy dependence on expert knowledge-based handcrafted features, binary profile features (BPF) and physicochemical properties features(PCPF) are used as inputs to the transformer model. Secondly, aimed at learning more diverse feature informations of ACPs, a pretrained model ProtBert is utilized. Thirdly, for better fusion of different feature channels, DAFF is employed. Finally, to evaluate the performance of the model, we compare it with other methods on five benchmark datasets, including ACP-Mixed-80 dataset, Main and Alternate datasets of AntiCP 2.0, LEE and Independet dataset, and ACPred-Fuse dataset. And the accuracies obtained by ACP-PDAFF are 0.86, 0.80, 0.94, 0.97 and 0.95 on five datasets, respectively, higher than existing methods by 1% to 12%. Therefore, by learning rich feature informations and effectively fusing different feature channels, ACD-PDAFF achieves outstanding performance. Our code and the datasets are available at https://github.com/wongsing/ACP-PDAFF.

摘要

抗癌肽 (ACPs) 因其能够选择性地杀死癌细胞而不损伤正常细胞,因此作为一种治疗癌症的新方法引起了极大的关注。许多基于人工智能的方法在预测 ACPs 方面表现出了令人印象深刻的性能。然而,现有方法在特征工程方面的局限性包括基于先验知识的手工特征、特征提取不足和特征融合效率低下。在这项研究中,我们提出了一种基于预训练模型和双通道注意力特征融合(DAFF)的模型,称为 ACP-PDAFF。首先,为了减少对手工特征的严重依赖,我们使用二进制轮廓特征 (BPF) 和理化性质特征 (PCPF) 作为输入到变压器模型。其次,为了学习 ACPs 更多样的特征信息,我们利用了预训练模型 ProtBert。第三,为了更好地融合不同的特征通道,我们采用了 DAFF。最后,为了评估模型的性能,我们在五个基准数据集上与其他方法进行了比较,包括 ACP-Mixed-80 数据集、AntiCP 2.0 的 Main 和 Alternate 数据集、LEE 和 Independet 数据集以及 ACPred-Fuse 数据集。ACP-PDAFF 在这五个数据集上的准确率分别为 0.86、0.80、0.94、0.97 和 0.95,比现有方法高 1%到 12%。因此,通过学习丰富的特征信息和有效地融合不同的特征通道,ACP-PDAFF 实现了出色的性能。我们的代码和数据集可在 https://github.com/wongsing/ACP-PDAFF 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验