Suppr超能文献

ACP-check:一种基于双向长短期记忆和多特征融合策略的抗癌肽预测模型。

ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy.

机构信息

School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China.

Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.

出版信息

Comput Biol Med. 2022 Sep;148:105868. doi: 10.1016/j.compbiomed.2022.105868. Epub 2022 Jul 13.

Abstract

The anticancer peptide is an emerging anticancer drug that has become an effective alternative to chemotherapy and targeted therapy due to fewer side effects and resistance. The traditional biological experimental method for identifying anticancer peptides is a time-consuming and complicated process that hinders large-scale, rapid, and effective identification. In this paper, we propose a model based on a bidirectional long short-term memory network and multi-features fusion, called ACP-check, which employs a bidirectional long short-term memory network to extract time-dependent information features from peptide sequences, and combines them with amino acid sequence features including binary profile feature, dipeptide composition, the composition of k-spaced amino acid group pairs, amino acid composition, and sequence-order-coupling number. To verify the performance of the model, six benchmark datasets are selected, including ACPred-Fuse, ACPred-FL, ACP240, ACP740, main and alternate datasets of AntiCP2.0. In terms of Matthews correlation coefficients, ACP-check obtains 0.37, 0.82, 0.80, 0.75, 0.56, and 0.86 on six datasets respectively, which is an improvement by 2%-86% than existing state-of-the-art anticancer peptides prediction methods. Furthermore, ACP-check achieves prediction accuracy with 0.91, 0.91, 0.90, 0.87, 0.78, and 0.93 respectively, which increases range from 1%-49%. Overall, the comparison experiment shows that ACP-check can accurately identify anticancer peptides by sequence-level information. The code and data are available at http://www.cczubio.top/ACP-check/.

摘要

抗癌肽是一种新兴的抗癌药物,由于副作用和耐药性较小,已成为化疗和靶向治疗的有效替代品。传统的鉴定抗癌肽的生物实验方法是一个耗时且复杂的过程,阻碍了大规模、快速和有效的鉴定。在本文中,我们提出了一种基于双向长短期记忆网络和多特征融合的模型,称为 ACP-check,它使用双向长短期记忆网络从肽序列中提取时间相关的信息特征,并将其与氨基酸序列特征(包括二进制轮廓特征、二肽组成、k 间隔氨基酸对的组成、氨基酸组成和序列顺序耦合数)相结合。为了验证模型的性能,我们选择了六个基准数据集,包括 ACPred-Fuse、ACPred-FL、ACP240、ACP740、AntiCP2.0 的主数据集和备用数据集。在 Matthews 相关系数方面,ACP-check 在六个数据集上分别获得了 0.37、0.82、0.80、0.75、0.56 和 0.86,比现有的抗癌肽预测方法提高了 2%-86%。此外,ACP-check 的预测准确率分别为 0.91、0.91、0.90、0.87、0.78 和 0.93,提高了 1%-49%。总体而言,对比实验表明,ACP-check 可以通过序列级信息准确识别抗癌肽。代码和数据可在 http://www.cczubio.top/ACP-check/ 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验