Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, PO Box 843079, Richmond, VA , 23284, USA.
Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, 1015 Floyd Avenue, PO Box 843079, Richmond, VA, 23284, USA.
Int J Legal Med. 2024 Nov;138(6):2281-2288. doi: 10.1007/s00414-024-03289-x. Epub 2024 Jul 13.
Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen's principal component analysis (PCA)-based ScreenClust HRM software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene Q qPCR instrument and EvaGreen intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.
尽管法医 DNA 定量方法的改进使得能够早期检测低模板/挑战性 DNA 样本,但直到 DNA 分析工作流程的最后阶段才会揭示复杂的随机效应。如果有一种能够在定量的早期阶段提供基因分型信息的检测方法,将允许检验员在 STR 扩增之前进行关键调整,从而能够立即报告潜在的排除信息。具体来说,qPCR 仪器通常具有解离曲线和/或高分辨率熔解曲线 (HRM) 功能;这一点,再加上统计预测分析,可以提供有关存在的 STR 基因型的额外信息。因此,本研究旨在评估基于 Qiagen 的主成分分析 (PCA) 的 ScreenClust HRM 软件和基于线性判别分析 (LDA) 的技术,以评估它们从 HRM 数据准确预测基因型和相似基因型组的能力。使用 Rotor-Gene Q qPCR 仪器和 EvaGreen 嵌入染料,从 STR D5S818 和 D18S51 扩增子生成单一来源样本的熔解曲线。当用于预测未知样本的 D5S818 基因型时,LDA 分析的预测准确性优于基于 PCA 的方法,无论是预测单个基因型(58.92%的准确性)还是基因组(81.00%的准确性)。然而,当测试具有更高异质性的基因座(D18S51)时,基于 PCA 的预测准确性率提高到与使用 LDA 获得的准确性率相似(分别为 45.10%和 63.46%)。本研究提供了基于 qPCR-HRM 数据进行 STR 基因分型预测建模性能的基础数据。为了扩大这种 HRM 检测方法在法医学中的适用性,可以使用更常用的 qPCR 平台对该方法进行测试。