Romero Marcelo R, Bracamonte A Guillermo
Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA-CONICET, Córdoba CP 5000, Argentina.
Departamento de Química Orgánica, Facultad de Ciencias Químicas, Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba CP 5000, Argentina.
Materials (Basel). 2024 Jul 2;17(13):3242. doi: 10.3390/ma17133242.
In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.
在本通讯中,通过引入石墨烯并将其与具有不同光谱特性的不同基底相结合,开发了光学活性超材料的设计与制造。它关注的是石墨烯及其衍生物如何在考虑基底和表面内经过改性和增强的光学特性的情况下,产生各种光学装置和材料。通过这种方式,讨论了光如何在受限的纳米图案表面或通过改性微透镜沿其路径进行调谐和改性。除了由光的物理相互作用产生的这些光学特性外,还应指出非经典光路径和量子现象也可能参与其中。这样,具有特定特性(如高度凝聚的电子、伪电磁特性以及量子和发光特性)的石墨烯及相关碳基材料就可以被纳入。因此,根据材料构成的性质,经改性的基底可以通过光刺激以可变响应进行切换。因此,在这些具有目标光学活性特性(如在紫外、红外和太赫兹波长区间内)的超表面类型中,讨论了石墨烯及其衍生物的光学特性,以及它们的进一步特性和各自的潜在应用。