Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
Int J Mol Sci. 2024 Jun 21;25(13):6825. doi: 10.3390/ijms25136825.
Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.
生物分子凝聚物(BMCs)在生物系统中表现出生理和病理相关性。液态和固态凝聚物在大分子的时空调节和组织及其生物活性中都起着重要作用。一些病理性固态凝聚物,如路易体和其他纤维状聚集体,被假设起源于液态凝聚物。鉴于 BMCs 具有功能和非功能两种作用,因此了解生物分子凝聚物形成和起始的机制至关重要。我们使用异质核糖核蛋白 A1(hnRNPA1)的低复杂度结构域(LCD)作为模型,通过动态光散射(DLS)监测初始组装事件,同时调节 pH 值和盐条件以干扰大分子和凝聚物的性质。我们观察到纳米级生物分子凝聚物(nano-condensates)的形成,这些凝聚物与蛋白质单体和微米级凝聚物不同。我们还观察到,溶解微米级蛋白质凝聚物的条件不能溶解 nano-condensates,这表明稳定 nano-condensates 和微米级凝聚物的力的平衡是不同的。这些发现为驱动蛋白质相分离的力和大分子凝聚的潜在成核结构提供了深入的了解。