Suppr超能文献

生物分子凝聚物中蛋白质的构象自由度和拓扑约束

Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.

机构信息

Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States. Electronic address: https://twitter.com/@DanielScholl_be.

Department of Integrative and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, United States.

出版信息

J Mol Biol. 2022 Jan 15;434(1):167348. doi: 10.1016/j.jmb.2021.167348. Epub 2021 Nov 9.

Abstract

The emergence of biomolecular condensation and liquid-liquid phase separation (LLPS) introduces a new layer of complexity into our understanding of cell and molecular biology. Evidence steadily grows indicating that condensates are not only implicated in physiology but also human disease. Macro- and mesoscale characterization of condensates as a whole have been instrumental in understanding their biological functions and dysfunctions. By contrast, the molecular level characterization of condensates and how condensates modify the properties of the molecules that constitute them thus far remain comparably scarce. In this minireview we summarize and discuss the findings of several recent studies that have focused on structure, dynamics, and interactions of proteins undergoing condensation. The mechanistic insights they provide help us identify the relevant properties nature and scientists can leverage to modulate the behavior of condensate systems. We also discuss the unique environment of the droplet surface and speculate on effects of topological constraints and physical exclusion on condensate properties.

摘要

生物分子凝聚和液-液相分离 (LLPS) 的出现为我们理解细胞和分子生物学引入了一个新的复杂性层次。越来越多的证据表明,凝聚物不仅与生理学有关,而且与人类疾病有关。对凝聚物进行宏观和中观表征对于理解它们的生物学功能和功能障碍至关重要。相比之下,目前对凝聚物的分子水平表征以及凝聚物如何改变构成它们的分子的性质仍然相对较少。在这篇综述中,我们总结和讨论了最近几项集中研究蛋白质凝聚的结构、动力学和相互作用的研究结果。它们提供的机制见解帮助我们确定了性质和科学家可以利用的相关性质,以调节凝聚物系统的行为。我们还讨论了液滴表面的独特环境,并推测拓扑约束和物理排斥对凝聚物性质的影响。

相似文献

2
Reversible Kinetic Trapping of FUS Biomolecular Condensates.FUS 生物分子凝聚物的可逆动力学捕获。
Adv Sci (Weinh). 2022 Feb;9(4):e2104247. doi: 10.1002/advs.202104247. Epub 2021 Dec 4.
6
Higher-order organization of biomolecular condensates.生物分子凝聚物的高级组织。
Open Biol. 2021 Jun;11(6):210137. doi: 10.1098/rsob.210137. Epub 2021 Jun 16.
7
Fundamental Aspects of Phase-Separated Biomolecular Condensates.相分离生物分子凝聚体的基本方面。
Chem Rev. 2024 Jul 10;124(13):8550-8595. doi: 10.1021/acs.chemrev.4c00138. Epub 2024 Jun 17.
10
RNA-driven phase transitions in biomolecular condensates.RNA 驱动的生物分子凝聚相相变。
Mol Cell. 2024 Oct 3;84(19):3692-3705. doi: 10.1016/j.molcel.2024.09.005.

本文引用的文献

2
Nucleation landscape of biomolecular condensates.生物分子凝聚物的成核景观。
Nature. 2021 Nov;599(7885):503-506. doi: 10.1038/s41586-021-03905-5. Epub 2021 Sep 22.
3
Regulation of biomolecular condensates by interfacial protein clusters.界面蛋白簇对生物分子凝聚物的调控。
Science. 2021 Sep 10;373(6560):1218-1224. doi: 10.1126/science.abg7071. Epub 2021 Sep 9.
6
Generic nature of the condensed states of proteins.蛋白质凝聚态的普遍性。
Nat Cell Biol. 2021 Jun;23(6):587-594. doi: 10.1038/s41556-021-00697-8. Epub 2021 Jun 9.
8
Designer Condensates: A Toolkit for the Biomolecular Architect.设计凝聚物:生物分子建筑师的工具包。
J Mol Biol. 2021 Jun 11;433(12):166837. doi: 10.1016/j.jmb.2021.166837. Epub 2021 Feb 1.
10
Biochemical Timekeeping Via Reentrant Phase Transitions.生物化学的时间计量:再入相位转变。
J Mol Biol. 2021 Jun 11;433(12):166794. doi: 10.1016/j.jmb.2020.166794. Epub 2020 Dec 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验