Suppr超能文献

整合计算机模拟和体外方法,以鉴定对癌细胞具有选择性细胞毒性的天然肽。

Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells.

机构信息

Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan.

Department of Medical Research, Hsinchu Municipal MacKay Children's Hospital, Hsinchu City 300, Taiwan.

出版信息

Int J Mol Sci. 2024 Jun 21;25(13):6848. doi: 10.3390/ijms25136848.

Abstract

Anticancer peptides (ACPs) are bioactive compounds known for their selective cytotoxicity against tumor cells via various mechanisms. Recent studies have demonstrated that in silico machine learning methods are effective in predicting peptides with anticancer activity. In this study, we collected and analyzed over a thousand experimentally verified ACPs, specifically targeting peptides derived from natural sources. We developed a precise prediction model based on their sequence and structural features, and the model's evaluation results suggest its strong predictive ability for anticancer activity. To enhance reliability, we integrated the results of this model with those from other available methods. In total, we identified 176 potential ACPs, some of which were synthesized and further evaluated using the MTT colorimetric assay. All of these putative ACPs exhibited significant anticancer effects and selective cytotoxicity against specific tumor cells. In summary, we present a strategy for identifying and characterizing natural peptides with selective cytotoxicity against cancer cells, which could serve as novel therapeutic agents. Our prediction model can effectively screen new molecules for potential anticancer activity, and the results from in vitro experiments provide compelling evidence of the candidates' anticancer effects and selective cytotoxicity.

摘要

抗癌肽 (ACPs) 是一类具有生物活性的化合物,其通过多种机制对肿瘤细胞具有选择性细胞毒性。最近的研究表明,基于计算机的机器学习方法在预测具有抗癌活性的肽方面非常有效。在这项研究中,我们收集和分析了超过一千种经过实验验证的 ACPs,特别是针对源自天然来源的肽。我们基于其序列和结构特征开发了一个精确的预测模型,该模型的评估结果表明其对抗癌活性具有很强的预测能力。为了提高可靠性,我们将该模型的结果与其他可用方法的结果进行了整合。总共,我们鉴定了 176 种潜在的 ACPs,其中一些已被合成,并进一步使用 MTT 比色法进行了评估。所有这些假定的 ACPs均表现出对特定肿瘤细胞的显著抗癌作用和选择性细胞毒性。总之,我们提出了一种鉴定和表征对癌细胞具有选择性细胞毒性的天然肽的策略,这些肽可能成为新型治疗剂。我们的预测模型可以有效地筛选具有潜在抗癌活性的新分子,而体外实验的结果提供了有力的证据证明候选物的抗癌作用和选择性细胞毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c87/11240926/e4f9126f4fdb/ijms-25-06848-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验