Suppr超能文献

循环载荷作用下热固性聚合物累积微观损伤的分子动力学模拟

Molecular Dynamics Simulation of Cumulative Microscopic Damage in a Thermosetting Polymer under Cyclic Loading.

作者信息

Yamada Naoki, Morita Mayu, Takamura Maruri, Murashima Takahiro, Oya Yutaka, Koyanagi Jun

机构信息

Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan.

Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

出版信息

Polymers (Basel). 2024 Jun 26;16(13):1813. doi: 10.3390/polym16131813.

Abstract

To develop durable composite materials, it is crucial to elucidate the correlation between nanoscale damage in thermosetting resins and the degradation of their mechanical properties. This study aims to investigate this correlation by performing cyclic loading tests on the cross-linked structure of diglycidyl ether bisphenol A (DGEBA) and 4,4'-diaminodiphenyl sulfone (44-DDS) using all-atom molecular dynamics (MD) simulations. To accurately represent the nanoscale damage in MD simulations, a bond dissociation algorithm based on interatomic distance criteria is applied, and three characteristics are used to quantify the microscopic damage: stress-strain curves, entropy generation, and the formation of voids. As a result, the number of covalent bond dissociations increases with both the cyclic loading and its amplitude, resulting in higher entropy generation and void formation, causing the material to exhibit inelastic behavior. Furthermore, our findings indicate the occurrence of a microscopic degradation process in the cross-linked polymer: Initially, covalent bonds align with the direction of the applied load. Subsequently, tensioned covalent bonds sequentially break, resulting in significant void formation. Consequently, the stress-strain curves exhibit nonlinear and inelastic behavior. Although our MD simulations employ straightforward criteria for covalent bond dissociation, they unveil a distinct correlation between the number of bond dissociations and microscale damage. Enhancing the algorithm holds promise for yielding more precise predictions of material degradation processes.

摘要

为了开发耐用的复合材料,阐明热固性树脂中的纳米级损伤与其力学性能退化之间的相关性至关重要。本研究旨在通过使用全原子分子动力学(MD)模拟对双酚A二缩水甘油醚(DGEBA)和4,4'-二氨基二苯砜(4,4-DDS)的交联结构进行循环加载试验来研究这种相关性。为了在MD模拟中准确呈现纳米级损伤,应用了一种基于原子间距离标准的键解离算法,并使用三个特征来量化微观损伤:应力-应变曲线、熵产生和空隙形成。结果,共价键解离的数量随循环加载及其幅度的增加而增加,导致更高的熵产生和空隙形成,使材料表现出非弹性行为。此外,我们的研究结果表明交联聚合物中发生了微观降解过程:最初,共价键与施加负载的方向对齐。随后,受拉的共价键依次断裂,导致大量空隙形成。因此,应力-应变曲线呈现出非线性和非弹性行为。尽管我们的MD模拟采用了简单的共价键解离标准,但它们揭示了键解离数量与微观损伤之间的明显相关性。改进该算法有望对材料降解过程做出更精确的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb4d/11243922/6f0161bdc0c7/polymers-16-01813-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验