Suppr超能文献

基于多智能体系统的虚拟编组列车速度收敛协同控制

Multi-Agent System Based Cooperative Control for Speed Convergence of Virtually Coupled Train Formation.

作者信息

Liu Chuanzhen, Xu Zhongwei

机构信息

School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China.

Shanghai Hengjun Technology Co., Ltd., Shanghai 200949, China.

出版信息

Sensors (Basel). 2024 Jun 29;24(13):4231. doi: 10.3390/s24134231.

Abstract

This paper investigates the problem of spacing control between adjacent trains in train formation and proposes a distributed train-formation speed-convergence cooperative-control algorithm based on barrier Lyapunov function. Considering practical limitations such as communication distance and bandwidth constraints during operation, not all trains can directly communicate with the leader and obtain the expected trajectory it sends, making it difficult to maintain formation consistency as per the predetermined ideal state. Furthermore, to address the challenge of unknown external disturbances encountered by trains during operation, this paper designs a distributed observer deployed on each train in the formation. This observer can estimate and dynamically compensate for unknown reference trajectories and disturbances solely based on the states of adjacent trains. Additionally, to ensure that the spacing between adjacent trains remains within a predefined range, a safety hard constraint, this paper encodes the spacing hard constraint using barrier Lyapunov function. By integrating nonlinear adaptive control theory to handle model parameter uncertainties, a barrier Lyapunov function-based adaptive control method is proposed, which enables all trains to track the reference trajectory while ensuring that the spacing between them remains within the preset interval, therefore guaranteeing the asymptotic stability of the closed-loop system. Finally, a practical example using data from the Guangzhou Metro Line 22, specifically the route from Shiguang Road Station to Chentougang Station over three stations and two sections, is utilized to validate the effectiveness and robustness of the proposed algorithm.

摘要

本文研究了列车编组中相邻列车之间的间距控制问题,并提出了一种基于障碍李雅普诺夫函数的分布式列车编组速度收敛协同控制算法。考虑到运行过程中的通信距离和带宽限制等实际约束,并非所有列车都能直接与列车长通信并获取其发送的期望轨迹,这使得难以按照预定的理想状态保持编组一致性。此外,为应对列车运行过程中遇到的未知外部干扰挑战,本文设计了一种部署在编队中每列列车上的分布式观测器。该观测器仅基于相邻列车的状态就能估计并动态补偿未知参考轨迹和干扰。另外,为确保相邻列车之间的间距保持在预定义范围内(这是一个安全硬约束),本文使用障碍李雅普诺夫函数对间距硬约束进行编码。通过整合非线性自适应控制理论来处理模型参数不确定性,提出了一种基于障碍李雅普诺夫函数的自适应控制方法,该方法使所有列车能够跟踪参考轨迹,同时确保它们之间的间距保持在预设区间内,从而保证闭环系统的渐近稳定性。最后,利用广州地铁22号线的数据进行了一个实例分析,具体是从时光路站到陈头岗站,途经三个车站和两个区间,以验证所提算法的有效性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baf3/11244554/b86093206d0b/sensors-24-04231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验