Suppr超能文献

借助统一的预测性维护平台提升智能制造:数据仓库、Apache Spark与机器学习之间的协同作用。

Elevating Smart Manufacturing with a Unified Predictive Maintenance Platform: The Synergy between Data Warehousing, Apache Spark, and Machine Learning.

作者信息

Su Naijing, Huang Shifeng, Su Chuanjun

机构信息

Department of Project Management and Industrial Engineering, Shandong University, 27 Shanda Nanlu, Jinan 150100, China.

Department of Industrial Engineering and Engineering Management, Yuan Ze University, 135, Far-East Rd., Taoyuan 320315, Taiwan.

出版信息

Sensors (Basel). 2024 Jun 29;24(13):4237. doi: 10.3390/s24134237.

Abstract

The transition to smart manufacturing introduces heightened complexity in regard to the machinery and equipment used within modern collaborative manufacturing landscapes, presenting significant risks associated with equipment failures. The core ambition of smart manufacturing is to elevate automation through the integration of state-of-the-art technologies, including artificial intelligence (AI), the Internet of Things (IoT), machine-to-machine (M2M) communication, cloud technology, and expansive big data analytics. This technological evolution underscores the necessity for advanced predictive maintenance strategies that proactively detect equipment anomalies before they escalate into costly downtime. Addressing this need, our research presents an end-to-end platform that merges the organizational capabilities of data warehousing with the computational efficiency of Apache Spark. This system adeptly manages voluminous time-series sensor data, leverages big data analytics for the seamless creation of machine learning models, and utilizes an Apache Spark-powered engine for the instantaneous processing of streaming data for fault detection. This comprehensive platform exemplifies a significant leap forward in smart manufacturing, offering a proactive maintenance model that enhances operational reliability and sustainability in the digital manufacturing era.

摘要

向智能制造的转型给现代协作制造环境中使用的机械设备带来了更高的复杂性,带来了与设备故障相关的重大风险。智能制造的核心目标是通过整合包括人工智能(AI)、物联网(IoT)、机器对机器(M2M)通信、云技术和广泛的大数据分析在内的先进技术来提高自动化程度。这种技术演变凸显了先进的预测性维护策略的必要性,这些策略能够在设备异常升级为代价高昂的停机之前主动检测到它们。为满足这一需求,我们的研究提出了一个端到端平台,该平台将数据仓库的组织能力与Apache Spark的计算效率相结合。该系统能够熟练管理大量的时间序列传感器数据,利用大数据分析无缝创建机器学习模型,并使用由Apache Spark驱动的引擎即时处理流数据以进行故障检测。这个综合平台体现了智能制造的重大飞跃,提供了一种主动维护模型,可提高数字制造时代的运营可靠性和可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4fe/11243848/008b2d9ad424/sensors-24-04237-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验