Suppr超能文献

在维管植物中,糖醛酸木聚糖侧链变异性的进化和细胞壁降解水解酶的补偿适应。

Evolution of glucuronoxylan side chain variability in vascular plants and the compensatory adaptations of cell wall-degrading hydrolases.

机构信息

Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK.

Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.

出版信息

New Phytol. 2024 Nov;244(3):1024-1040. doi: 10.1111/nph.19957. Epub 2024 Jul 12.

Abstract

Polysaccharide structural complexity not only influences cell wall strength and extensibility but also hinders pathogenic and biotechnological attempts to saccharify the wall. In certain species and tissues, glucuronic acid side groups on xylan exhibit arabinopyranose or galactose decorations whose genetic and evolutionary basis is completely unknown, impeding efforts to understand their function and engineer wall digestibility. Genetics and polysaccharide profiling were used to identify the responsible loci in Arabidopsis and Eucalyptus from proposed candidates, while phylogenies uncovered a shared evolutionary origin. GH30-family endo-glucuronoxylanase activities were analysed by electrophoresis, and their differing specificities were rationalised by phylogeny and structural analysis. The newly identified xylan arabinopyranosyltransferases comprise an overlooked subfamily in the GT47-A family of Golgi glycosyltransferases, previously assumed to comprise mainly xyloglucan galactosyltransferases, highlighting an unanticipated adaptation of both donor and acceptor specificities. Further neofunctionalisation has produced a Myrtaceae-specific xylan galactosyltransferase. Simultaneously, GH30 endo-glucuronoxylanases have convergently adapted to overcome these decorations, suggesting a role for these structures in defence. The differential expression of glucuronoxylan-modifying genes across Eucalyptus tissues, however, hints at further functions. Our results demonstrate the rapid adaptability of biosynthetic and degradative carbohydrate-active enzyme activities, providing insight into plant-pathogen interactions and facilitating plant cell wall biotechnological utilisation.

摘要

多糖结构的复杂性不仅影响细胞壁的强度和伸展性,也阻碍了对细胞壁进行糖化的致病和生物技术尝试。在某些物种和组织中,木聚糖上的葡萄糖醛酸侧基表现出阿拉伯吡喃糖或半乳糖的修饰,其遗传和进化基础完全未知,这阻碍了对其功能和细胞壁消化性工程的理解。通过遗传学和多糖分析,从候选物中确定了拟南芥和桉树中的负责基因座,同时系统发育揭示了它们的共同进化起源。通过电泳分析了 GH30 家族内切葡聚糖醛酸木聚糖酶的活性,并通过系统发育和结构分析合理化了它们不同的特异性。新鉴定的木聚糖阿拉伯吡喃糖基转移酶包含糖基转移酶 GT47-A 家族中被忽视的亚家族,以前被认为主要包含木葡聚糖半乳糖基转移酶,这突出了供体和受体特异性的意外适应性。进一步的新功能化产生了桃金娘科特有的木聚糖半乳糖基转移酶。同时,GH30 内切葡聚糖醛酸木聚糖酶也趋同适应以克服这些修饰,表明这些结构在防御中起作用。然而,木聚糖修饰基因在桉树组织中的差异表达暗示了它们的进一步功能。我们的研究结果表明,生物合成和降解碳水化合物活性酶的快速适应性,为植物-病原体相互作用提供了深入的了解,并促进了植物细胞壁生物技术的利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验