Suppr超能文献

核医学人工智能的现状与未来方向。

Current status and future directions in artificial intelligence for nuclear cardiology.

机构信息

Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Department of Cardiac Sciences, University of Calgary, Calgary, Canada.

出版信息

Expert Rev Cardiovasc Ther. 2024 Aug;22(8):367-378. doi: 10.1080/14779072.2024.2380764. Epub 2024 Jul 16.

Abstract

INTRODUCTION

Myocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management.

AREAS COVERED

PubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification.

EXPERT OPINION

There is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.

摘要

简介

心肌灌注成像(MPI)是最常被开具的心脏成像检查之一。准确的运动校正、图像配准和重建对于高质量的成像至关重要,但这在技术上具有挑战性,传统上依赖于专家的手动处理。通过准确的处理,可以整合丰富多样的临床、应激、功能和解剖数据,以指导患者管理。

涵盖领域

对 2020 年至 2024 年期间发表的与核心脏病学人工智能相关的文章,在 PubMed 和 Google Scholar 上进行了回顾。我们将概述人工智能(AI)解决方案在提供运动校正、图像配准和重建方面的突出作用。我们将回顾 AI 在提取混合 MPI 解剖数据方面的作用,因为这些数据通常会被忽视。最后,我们将讨论 AI 方法,以整合丰富的数据,改善疾病诊断或风险分层。

专家意见

有越来越多的证据表明,人工智能将通过自动化和改进图像采集和重建的各个方面来改变 MPI 的性能。医生和研究人员需要了解人工智能的潜在优势,以便从 MPI 的全部临床应用中受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验