Suppr超能文献

放射学、放射肿瘤学和核医学中的人工智能革命:变革与创新放射科学。

AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

作者信息

Carriero S, Cannella R, Cicchetti F, Angileri A, Bruno A, Biondetti P, Colciago R R, D'Antonio A, Della Pepa G, Grassi F, Granata V, Lanza C, Santicchia S, Miceli A, Piras A, Salvestrini V, Santo G, Pesapane F, Barile A, Carrafiello G, Giovagnoni A

机构信息

Department of Diagnostic and Interventional Radiology, Foundation IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy.

Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.

出版信息

J Med Imaging Radiat Oncol. 2025 Sep;69(6):649-659. doi: 10.1111/1754-9485.13880. Epub 2025 Jul 9.

Abstract

The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

摘要

将人工智能(AI)整合到临床实践中,尤其是在放射学、核医学和放射肿瘤学领域,正在改变诊断和治疗过程。人工智能驱动的工具,特别是深度学习和机器学习领域的工具,在增强图像识别、分析和决策方面显示出了巨大潜力。这项技术进步使得常规任务自动化、诊断准确性提高以及人为误差减少,从而实现更高效的工作流程。此外,人工智能在医疗保健领域的成功应用需要对年轻临床医生进行全面的教育和培训,迫切需要将人工智能纳入住院医师培训项目,确保未来的专科医生具备传统技能,并对人工智能技术及其临床应用有深入理解。这包括软件知识、数据分析、成像信息学以及围绕医学中人工智能使用的伦理考量。通过促进跨学科整合并强调人工智能教育,医疗保健专业人员可以充分利用人工智能的潜力来改善患者治疗效果,并推动医学成像和治疗领域的发展。本综述旨在评估人工智能如何影响放射学、核医学和放射肿瘤学,同时强调医学教育中专门的人工智能培训对于确保其成功临床整合的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验