Suppr超能文献

基于内镜图像的深度学习模型预测接受新辅助放化疗的局部进展期直肠癌的治疗反应:一项多中心研究。

Deep learning model based on endoscopic images predicting treatment response in locally advanced rectal cancer undergo neoadjuvant chemoradiotherapy: a multicenter study.

机构信息

Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, 266003, China.

Graduate School for Elite Engineers, Shandong University, Jinan, China.

出版信息

J Cancer Res Clin Oncol. 2024 Jul 13;150(7):350. doi: 10.1007/s00432-024-05876-2.

Abstract

PURPOSE

Neoadjuvant chemoradiotherapy has been the standard practice for patients with locally advanced rectal cancer. However, the treatment response varies greatly among individuals, how to select the optimal candidates for neoadjuvant chemoradiotherapy is crucial. This study aimed to develop an endoscopic image-based deep learning model for predicting the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.

METHODS

In this multicenter observational study, pre-treatment endoscopic images of patients from two Chinese medical centers were retrospectively obtained and a deep learning-based tumor regression model was constructed. Treatment response was evaluated based on the tumor regression grade and was defined as good response and non-good response. The prediction performance of the deep learning model was evaluated in the internal and external test sets. The main outcome was the accuracy of the treatment prediction model, measured by the AUC and accuracy.

RESULTS

This deep learning model achieved favorable prediction performance. In the internal test set, the AUC and accuracy were 0.867 (95% CI: 0.847-0.941) and 0.836 (95% CI: 0.818-0.896), respectively. The prediction performance was fully validated in the external test set, and the model had an AUC of 0.758 (95% CI: 0.724-0.834) and an accuracy of 0.807 (95% CI: 0.774-0.843).

CONCLUSION

The deep learning model based on endoscopic images demonstrated exceptional predictive power for neoadjuvant treatment response, highlighting its potential for guiding personalized therapy.

摘要

目的

新辅助放化疗已成为局部进展期直肠癌患者的标准治疗方法。然而,个体间的治疗反应差异很大,如何选择新辅助放化疗的最佳候选者至关重要。本研究旨在开发一种基于内镜图像的深度学习模型,用于预测局部进展期直肠癌对新辅助放化疗的反应。

方法

本研究为多中心观察性研究,回顾性获取了来自中国两家医疗机构的患者治疗前的内镜图像,并构建了基于深度学习的肿瘤退缩模型。根据肿瘤退缩分级评估治疗反应,定义为良好反应和非良好反应。在内部和外部测试集中评估深度学习模型的预测性能。主要结局是治疗预测模型的准确性,通过 AUC 和准确率来衡量。

结果

该深度学习模型表现出良好的预测性能。在内部测试集中,AUC 和准确率分别为 0.867(95%置信区间:0.847-0.941)和 0.836(95%置信区间:0.818-0.896)。在外部测试集中对预测性能进行了充分验证,模型的 AUC 为 0.758(95%置信区间:0.724-0.834),准确率为 0.807(95%置信区间:0.774-0.843)。

结论

基于内镜图像的深度学习模型对新辅助治疗反应具有出色的预测能力,为指导个体化治疗提供了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92cf/11793653/f046cf736349/432_2024_5876_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验