Suppr超能文献

从美国支付方的角度来看,预测全身性重症肌无力患者医疗费用高的因素:一种结合机器学习和回归方法的研究。

Predictors of High Healthcare Cost Among Patients with Generalized Myasthenia Gravis: A Combined Machine Learning and Regression Approach from a US Payer Perspective.

机构信息

Analysis Group, Inc., Montréal, QC, Canada.

Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Titusville, NJ, USA.

出版信息

Appl Health Econ Health Policy. 2024 Sep;22(5):735-747. doi: 10.1007/s40258-024-00897-x. Epub 2024 Jul 13.

Abstract

BACKGROUND

High healthcare costs could arise from unmet needs. This study used random forest (RF) and regression methods to identify predictors of high costs from a US payer perspective in patients newly diagnosed with generalized myasthenia gravis (gMG).

METHODS

Adults with gMG (first diagnosis = index) were selected from the IQVIA PharMetrics Plus database (2017-2021). Predictors of high healthcare costs were measured 12 months pre-index (main cohort) and during both the 12 months pre- and post-index (subgroup). Top 50 predictors of high costs [≥ $9404 (main cohort) and ≥ $9159 (subgroup) per-patient-per-month] were identified with RF models; the magnitude and direction of association were estimated with multivariable modified Poisson regression models.

RESULTS

The main cohort and subgroup included 2739 and 1638 patients, respectively. In RF analysis, the most important predictors of high costs before/on the index date were index MG exacerbation, all-cause inpatient admission, and number of days with corticosteroids. After the index date, these were immunoglobulin and monoclonal antibody use and number of all-cause outpatient visits and MG-related encounters. Adjusting for the top 50 predictors, post-index immunoglobulin use increased the risk of high costs by 261%, monoclonal antibody use by 135%, index MG exacerbation by 78%, and pre-index all-cause inpatient admission by 27% (all p < 0.05).

CONCLUSIONS

This analysis links patient characteristics both before the formal MG diagnosis and in the first year to high future healthcare costs. Findings may help inform payers on cost-saving strategies, and providers can potentially shift to targeted treatment approaches to reduce the clinical and economic burden of gMG.

摘要

背景

未满足的需求可能导致高额医疗费用。本研究使用随机森林(RF)和回归方法,从美国支付方的角度,确定新诊断为全身性重症肌无力(gMG)患者的高成本预测因素。

方法

从 IQVIA PharMetrics Plus 数据库(2017-2021 年)中选择患有 gMG 的成年人(首次诊断=索引)。在索引前 12 个月(主要队列)和索引前和后 12 个月(亚组)测量高医疗费用的预测因素。使用 RF 模型确定高成本的前 50 个预测因素[≥$9404(主要队列)和≥$9159(亚组)/患者/月];使用多变量修正泊松回归模型估计关联的幅度和方向。

结果

主要队列和亚组分别包括 2739 例和 1638 例患者。在 RF 分析中,索引日期前/上导致高成本的最重要预测因素是指数期 MG 恶化、全因住院和皮质类固醇使用天数。索引日期后,这些因素是免疫球蛋白和单克隆抗体的使用以及全因门诊就诊次数和 MG 相关就诊次数。调整前 50 个预测因素后,索引后免疫球蛋白使用使高成本风险增加 261%,单克隆抗体使用增加 135%,指数期 MG 恶化增加 78%,索引前全因住院增加 27%(均 P<0.05)。

结论

本分析将 MG 正式诊断前和第一年的患者特征与未来高医疗费用联系起来。研究结果可能有助于支付方制定节省成本的策略,并且提供者可以潜在地转向靶向治疗方法,以减轻 gMG 的临床和经济负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c8f/11338970/b0303bf1c819/40258_2024_897_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验