Li Jialin, Duan Yufeifan, Wang Yu, Zhang Ye, Zhou Jiaqi, Zhao Wei, Yu Junwei, Zhu Bo, Qiao Kun
Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061, China; Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials of Ministry of Education, Shandong University, Jinan 250061, China; Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
J Colloid Interface Sci. 2024 Dec;675:783-791. doi: 10.1016/j.jcis.2024.07.011. Epub 2024 Jul 2.
Currently, carbon-based porous materials for hydrogen (H) storage and carbon dioxide (CO) capture are mostly applied at higher pressures (30-300 bar). However, applications for H storage and CO capture under ambient pressure conditions are significant for the development of portable, household, and miniaturized H energy technologies. This demands a higher standard for the interface microenvironment of adsorbents. Derived from polyurethane foams (PUFs) solid waste, the hierarchical porous foam carbon with interpenetrating-type pore structures exhibits high specific surface area (S = 1753 m/g), abundant oxygen and nitrogen functional groups, and a hierarchical nanopore structure (V = 0.232 cm/g, V = 0.628 cm/g and V = 0.186 cm/g) through the mild-homogeneous sonication-assisted activation process. Under the limited adsorption of pore interface microenvironment composed by hierarchical nanopore structure and dipole-induced interaction (H(Ⅱ)-H(Ⅰ)···N/O and O(Ⅱ) = C(Ⅰ) = O(Ⅱ)···N/O), it exhibits an excellent H storage density (2.92 wt% at 77 K, 1 bar) and CO capture capacity (5.28 mmol/g at 298 K, 1 bar). This research approach can serve as a reference for the dual-functional design of porous foam carbon, and promote the development of adsorption materials for CO capture and energy gas storage under ambient conditions.
目前,用于储氢和捕获二氧化碳的碳基多孔材料大多在较高压力(30 - 300巴)下应用。然而,在常压条件下进行储氢和捕获二氧化碳对于便携式、家用和小型化氢能技术的发展具有重要意义。这就对吸附剂的界面微环境提出了更高的标准。由聚氨酯泡沫(PUF)固体废料衍生而来的具有互穿型孔结构的分级多孔泡沫碳,通过温和均匀的超声辅助活化过程,展现出高比表面积(S = 1753 m²/g)、丰富的氧和氮官能团以及分级纳米孔结构(V微孔 = 0.232 cm³/g,V介孔 = 0.628 cm³/g 和 V大孔 = 0.186 cm³/g)。在由分级纳米孔结构和偶极诱导相互作用(H(Ⅱ)-H(Ⅰ)···N/O 和 O(Ⅱ)=C(Ⅰ)=O(Ⅱ)···N/O)构成的孔界面微环境的有限吸附作用下,它表现出优异的储氢密度(在77 K,1巴条件下为2.92 wt%)和二氧化碳捕获容量(在298 K,1巴条件下为5.28 mmol/g)。这种研究方法可为多孔泡沫碳的双功能设计提供参考,并推动常压条件下用于捕获二氧化碳和储存能源气体的吸附材料的发展。