Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering. University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain.
Institute of Sustainable Processes, University of Valladolid, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering. University of Valladolid, Dr. Mergelina s/n., 47011, Valladolid, Spain.
J Environ Manage. 2024 Aug;366:121811. doi: 10.1016/j.jenvman.2024.121811. Epub 2024 Jul 14.
Nowadays, the utilization of biogas for energy generation is hindered by the declining production costs of solar and wind power. A shift towards the valorization of biogas into ectoine, a highly valuable bioproduct priced at 1000 €⸱kg, offers a novel approach to fostering a more competitive biogas market while contributing to carbon neutrality. This study evaluated the optimization of CH gas-liquid mass transfer in 10 L bubble column bioreactors for CH conversion into ectoine and hydroxyectoine using a mixed methanotrophic culture. The influence of the empty bed residence time (EBRTs of 27, 54, and 104 min) at different membrane diffuser pore sizes (0.3 and 0.6 mm) was investigated. Despite achieving CH elimination capacities (CH-ECs) of 10-12 g⸱m⸱h, an EBRT of 104 min mediated CH limitation within the cultivation broth, resulting in a negligible biomass growth. Reducing the EBRT to 54 min entailed CH-ECs of 21-24 g⸱m⸱h, concomitant to a significant increase in biomass growth (up to 0.17 g⸱L⸱d) and reaching maximum ectoine and hydroxyectoine accumulation of 79 and 13 mg⸱gVSS, respectively. Conversely, process operation at an EBRT of 27 min lead to microbial inhibition, resulting in a reduced biomass growth of 0.09 g⸱L⸱d and an ectoine content of 47 mg⸱gVSS. While the influence of diffuser pore size was less pronounced compared to EBRT, the optimal process performance was observed with a diffuser pore size of 0.6 mm.
如今,由于太阳能和风能的生产成本不断下降,沼气用于发电的利用率受到了阻碍。将沼气转化为具有高经济价值的生物制品——章鱼胺(价格为 1000 欧元/千克),为培育更具竞争力的沼气市场提供了一种新方法,同时有助于实现碳中和。本研究评估了在 10 L 鼓泡塔生物反应器中优化 CH 气液传质,利用混合甲烷营养菌将 CH 转化为章鱼胺和羟基章鱼胺。考察了不同膜扩散器孔径(0.3 和 0.6mm)下空床停留时间(EBRT,分别为 27、54 和 104min)的影响。尽管达到了 10-12g·m-3·h-1 的 CH 消除容量(CH-ECs),但 104min 的 EBRT 导致培养物中的 CH 受到限制,生物量生长可忽略不计。将 EBRT 缩短至 54min 会导致 CH-ECs 增加到 21-24g·m-3·h-1,同时生物量生长显著增加(高达 0.17g·L-1·d-1),并达到最大的章鱼胺和羟基章鱼胺积累量,分别为 79 和 13mg·gVSS。相反,在 EBRT 为 27min 的情况下进行操作会导致微生物抑制,生物量生长减少至 0.09g·L-1·d-1,章鱼胺含量为 47mg·gVSS。与 EBRT 相比,扩散器孔径的影响不太明显,但在扩散器孔径为 0.6mm 的情况下观察到最佳的工艺性能。