Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
Institute of Sustainable Processes, University of Valladolid, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
Water Res. 2023 Oct 15;245:120665. doi: 10.1016/j.watres.2023.120665. Epub 2023 Sep 23.
Despite the potential of biogas from waste/wastewater treatment as a renewable energy source, the presence of pollutants and the rapid decrease in the levelized cost of solar and wind power constrain the use of biogas for energy generation. Biogas conversion into ectoine, one of the most valuable bioproducts (1000 €/kg), constitutes a new strategy to promote a competitive biogas market. The potential for a stand-alone 20 L bubble column bioreactor operating at 6% NaCl and two 10 L interconnected bioreactors (at 0 and 6% NaCl, respectively) for ectoine production from biogas was comparatively assessed. The stand-alone reactor supported the best process performance due to its highest robustness and efficiency for ectoine accumulation (20-52 mg/g) and CH degradation (up to 84%). The increase in N availability and internal gas recirculation did not enhance ectoine synthesis. However, a 2-fold increase in the internal gas recirculation resulted in an approximately 1.3-fold increase in CH removal efficiency. Finally, the recovery of ectoine through bacterial bio-milking resulted in efficiencies of >70% without any negative impact of methanotrophic cell recycling to the bioreactors on CH biodegradation or ectoine synthesis.
尽管来自废物/废水处理的沼气作为可再生能源具有潜力,但污染物的存在以及太阳能和风力发电的平准化成本的迅速下降限制了沼气用于发电。将沼气转化为最有价值的生物制品之一(1000 欧元/公斤)的四氢嘧啶,构成了促进有竞争力的沼气市场的新策略。比较评估了在 6%NaCl 下运行的独立 20L 鼓泡柱生物反应器和两个 10L 相互连接的生物反应器(分别在 0%和 6%NaCl 下)用于从沼气生产四氢嘧啶的潜力。由于其对四氢嘧啶积累(20-52mg/g)和 CH 降解(高达 84%)的最高稳健性和效率,独立式反应器支持最佳的工艺性能。N 可用性的增加和内部气体再循环并没有促进四氢嘧啶的合成。然而,内部气体再循环增加两倍导致 CH 去除效率增加约 1.3 倍。最后,通过细菌生物挤奶回收四氢嘧啶的效率>70%,而甲烷营养细胞回收对生物反应器中 CH 生物降解或四氢嘧啶合成没有任何负面影响。