Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
Department of Neurology and Medical Psychology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
J Biol Chem. 2024 Aug;300(8):107556. doi: 10.1016/j.jbc.2024.107556. Epub 2024 Jul 11.
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
多样性是 G 蛋白偶联受体 (GPCR) 信号的一个标志,部分源于单个基因的选择性剪接,产生一种受体的多个同工型。此外,受体对配体的反应可以通过长时间或重复暴露于配体而发生脱敏作用来减弱。这两种现象都已经在后口动物的速激肽信号系统中得到了证明和举例说明,尽管磷酸化在脱敏中的作用仍然是一个有争议的问题。在这里,我们描述了软体动物海兔 Aplysia 中与速激肽相关的肽 (TKRPs) 的信号系统。我们克隆了 Aplysia TKRP 前体,它编码三个含有 FXGXR-amide 基序的 TKRPs (apTKRP-1、apTKRP-2a 和 apTKRP-2b)。原位杂交和免疫组织化学显示 TKRP mRNA 和肽在脑神经节中表达丰富。使用质谱法在中枢神经系统神经节的提取物中观察到 TKRPs 及其翻译后修饰。我们鉴定了两种 Aplysia TKRP 受体 (apTKRPRs),命名为 apTKRPR-A 和 apTKRPR-B。这些受体是通过同一基因的选择性剪接产生的两种同工型,仅在其细胞内 C 末端不同。apTKRP-2b 的结构-活性关系分析表明,配体的 C 末端酰胺化和保守残基对于受体激活都是至关重要的。apTKRPRs 的 C 末端截短和突变体表明,两种受体都存在 C 末端磷酸化非依赖性脱敏作用。此外,apTKRPR-B 还通过 C 末端丝氨酸/苏氨酸残基的磷酸化表现出磷酸化依赖性脱敏作用。对 Aplysia TKRP 信号系统的全面表征突出了 TKRP 和 TK 信号系统的进化保守性,同时强调了通过选择性剪接和不同的脱敏机制调节受体的复杂性。