Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States.
Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States.
FEMS Microbiol Ecol. 2024 Aug 13;100(9). doi: 10.1093/femsec/fiae099.
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
溶解态有机磷(DOP)包含具有磷酸酯、磷酸酐和磷碳键的化合物。虽然 DOP 对海洋微生物具有重要的营养价值,但广泛存在的蓝藻聚球藻对每种键类的生物可利用性仍知之甚少。本研究评估了来自开阔海洋和沿海海洋的聚球藻菌株对键类特异性 DOP 的利用。当提供磷酸盐、磷酸酐[3-多磷酸盐和 45-多磷酸盐]或具有磷酸酐和磷酸酯键的 DOP 化合物(腺苷 5'-三磷酸)时,两种菌株的生长速率相当。在磷酸酯[葡萄糖-6-磷酸、腺苷 5'-单磷酸、双(4-甲基伞形基)磷酸]上的生长速率是可变的,并且两种菌株都不能在选定的含磷碳化合物上生长。两种菌株都水解 3-多磷酸盐,然后是腺苷 5'-三磷酸,最后是腺苷 5'-单磷酸,表现出对磷酸酐键的优先酶水解。这些菌株的外蛋白组含有磷水解酶,这些酶与在磷酸盐缺乏条件下增强的 3-多磷酸盐和腺苷 5'-三磷酸的细胞外水解相结合,表明这些外蛋白对磷酸酐键的积极矿化作用。聚球藻碱性磷酸酶具有广泛的底物特异性,包括对磷酸酐 3-多磷酸盐的活性,不同菌株之间的亲和力不同。总的来说,这些发现强调了具有磷酸酐键的化合物在聚球藻磷营养中的潜在重要作用,并突出了对 DOP 键类分子多样性的不同生长和酶反应,从而扩展了我们对海洋生态系统中微生物介导的 DOP 循环的理解。