Suppr超能文献

评估大型语言模型在为脉络膜黑色素瘤患者提供支持方面的准确性。

Assessing large language models' accuracy in providing patient support for choroidal melanoma.

机构信息

Moorfields Eye Hospital NHS Foundation Trust, City Road London, London, UK.

Department of Ophthalmology, Inselspital University Hospital of Bern, Bern, Switzerland.

出版信息

Eye (Lond). 2024 Nov;38(16):3113-3117. doi: 10.1038/s41433-024-03231-w. Epub 2024 Jul 13.

Abstract

PURPOSE

This study aimed to evaluate the accuracy of information that patients can obtain from large language models (LLMs) when seeking answers to common questions about choroidal melanoma.

METHODS

Comparative study comparing frequently asked questions from choroidal melanoma patients and queried three major LLMs-ChatGPT 3.5, Bing AI, and DocsGPT. Answers were reviewed by three ocular oncology experts and scored as accurate, partially accurate, or inaccurate. Statistical analysis compared the quality of responses across models.

RESULTS

For medical advice questions, ChatGPT gave 92% accurate responses compared to 58% for Bing AI and DocsGPT. For pre/post-op questions, ChatGPT and Bing AI were 86% accurate while DocsGPT was 73% accurate. There were no statistically significant differences between models. ChatGPT responses were the longest while Bing AI responses were the shortest, but length did not affect accuracy. All LLMs appropriately directed patients to seek medical advice from professionals.

CONCLUSION

LLMs show promising capability to address common choroidal melanoma patient questions at generally acceptable accuracy levels. However, inconsistent, and inaccurate responses do occur, highlighting the need for improved fine-tuning and oversight before integration into clinical practice.

摘要

目的

本研究旨在评估患者在寻求有关脉络膜黑色素瘤常见问题的答案时,从大型语言模型(LLM)获得的信息的准确性。

方法

这是一项比较研究,比较了脉络膜黑色素瘤患者的常见问题和三个主要的 LLM(ChatGPT 3.5、Bing AI 和 DocsGPT)查询的问题。答案由三位眼肿瘤科专家进行审查,并评为准确、部分准确或不准确。对跨模型的响应质量进行了统计分析。

结果

在医疗建议问题上,ChatGPT 的准确回答率为 92%,而 Bing AI 和 DocsGPT 为 58%。在术前/术后问题上,ChatGPT 和 Bing AI 的准确率为 86%,而 DocsGPT 为 73%。模型之间没有统计学上的显著差异。ChatGPT 的回答最长,而 Bing AI 的回答最短,但长度并不影响准确性。所有的 LLM 都适当地指导患者向专业人士寻求医疗建议。

结论

LLM 显示出有希望的能力,可以在普遍可接受的准确性水平上解决常见的脉络膜黑色素瘤患者问题。然而,确实会出现不一致和不准确的回答,这突出表明在将其整合到临床实践之前,需要进行改进的微调和监督。

相似文献

引用本文的文献

2
The Role of ChatGPT in Dermatology Diagnostics.ChatGPT在皮肤病诊断中的作用。
Diagnostics (Basel). 2025 Jun 16;15(12):1529. doi: 10.3390/diagnostics15121529.

本文引用的文献

6
Large language models in vitreoretinal surgery.玻璃体视网膜手术中的大语言模型
Eye (Lond). 2024 Mar;38(4):809-810. doi: 10.1038/s41433-023-02751-1. Epub 2023 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验