Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany.
Cell Rep. 2024 Jul 23;43(7):114448. doi: 10.1016/j.celrep.2024.114448. Epub 2024 Jul 13.
Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1 by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1 missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.
Noonan 综合征患者携带 LZTR1 致病变异体特别容易发生严重且早发性肥厚型心肌病。在这项研究中,我们使用患者特异性和 CRISPR-Cas9 校正的诱导多能干细胞(iPSC)心肌细胞来研究同源变异体 LZTR1 的机制后果。分子、细胞和功能表型分析结合计算机预测确定了一种特定于 LZTR1 的疾病机制,引发了心肌肥大。该变体预计会改变二聚化结构域的结合亲和力,从而促进线性 LZTR1 聚合物的形成。LZTR1 复合物功能障碍导致 RAS GTPases 的积累,从而引发蛋白质组景观的全局病理变化,最终导致细胞肥大。此外,我们的数据表明,LZTR1 通过非蛋白酶体途径介导心肌细胞特异性 MRAS 降解,而 RIT1 降解则通过 LZTR1 依赖性和非依赖性途径介导。LZTR1 错义变异的单等位基因或双等位基因校正可挽救分子和细胞疾病表型,为基于 CRISPR 的治疗提供了概念验证。