Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
Bioelectrochemistry. 2024 Dec;160:108779. doi: 10.1016/j.bioelechem.2024.108779. Epub 2024 Jul 13.
Non-electroactive bacteria (n-EAB), constituting the majority of known bacteria to date, have been underutilized in electrochemical conversion technologies due to their lack of direct electron transfer to electrodes. In this study, we established an electric wiring between n-EAB (gram-positive Bacillus subtilis and gram-negative Escherichia coli) and an extracellular electrode via a ferrocene-polyethyleneimine-based redox polymer (Fc-PEI). Chronoamperometry recordings indicated that Fc-PEI can transfer intracellular electrons to the extracellular electrode regardless of the molecular organization of PEI (linear or branched) and the membrane structure of bacteria (gram-positive or -negative). As fluorescence staining suggested, Fc-PEI improves the permeability of the bacterial cell membrane, enabling electron carriers in the cell to react with Fc. In addition, experiments with Fc-immobilized electrodes without PEI suggested the existence of an alternative electron transfer pathway from B. subtilis to the extracellular Fc adsorbed onto the cell membrane. Furthermore, we proposed for the first time that the bacteria/Fc-linear PEI modified structure enables selective measurement of immobilized bacterial activity by physically blocking contact between the electrode surface and planktonic cells co-existing in the surrounding media. Such electrodes can be a powerful analytical tool for elucidating the metabolic activities of specific bacteria wired to the electrode even within complex bacterial communities.
非电活性细菌(n-EAB)是迄今为止已知细菌的大多数,由于它们缺乏直接向电极传递电子的能力,因此在电化学转化技术中未得到充分利用。在这项研究中,我们通过基于二茂铁-聚乙烯亚胺的氧化还原聚合物(Fc-PEI)在 n-EAB(革兰氏阳性枯草芽孢杆菌和革兰氏阴性大肠杆菌)与细胞外电极之间建立了电连接。计时安培记录表明,无论 PEI 的分子组织(线性或支链)和细菌的膜结构(革兰氏阳性或阴性)如何,Fc-PEI 都可以将细胞内电子转移到细胞外电极。如荧光染色所示,Fc-PEI 提高了细菌细胞膜的通透性,使细胞内的电子载体能够与 Fc 发生反应。此外,使用没有 PEI 的 Fc 固定电极的实验表明,存在枯草芽孢杆菌到细胞外 Fc 的替代电子转移途径,该 Fc 吸附在细胞膜上。此外,我们首次提出,细菌/Fc-线性 PEI 修饰结构通过物理阻止存在于周围介质中的浮游细胞与电极表面接触,从而能够选择性地测量固定化细菌的活性。这种电极可以成为一种强大的分析工具,用于阐明甚至在复杂细菌群落中连接到电极的特定细菌的代谢活性。