Suppr超能文献

单壁碳纳米管包裹带电荷多糖增强细胞外电子传递。

Single-walled Carbon Nanotubes Wrapped with Charged Polysaccharides Enhance Extracellular Electron Transfer.

机构信息

Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

出版信息

ACS Appl Bio Mater. 2024 Aug 19;7(8):5651-5661. doi: 10.1021/acsabm.4c00749. Epub 2024 Jul 30.

Abstract

Microbial electrochemical systems (MESs) rely on the microbes' ability to transfer charges from their anaerobic respiratory processes to electrodes through extracellular electron transfer (EET). To increase the generally low output signal in devices, advanced bioelectrical interfaces tend to augment this problem by attaching conducting nanoparticles, such as positively charged multiwalled carbon nanotubes (CNTs), to the base carbon electrode to electrostatically attract the negatively charged bacterial cell membrane. On the other hand, some reports point to the importance of the magnitude of the surface charge of functionalized single-walled CNTs (SWCNTs) as well as the size of functional groups for interaction with the cell membrane, rather than their polarity. To shed light on these phenomena, in this study, we prepared and characterized well-solubilized aqueous dispersions of SWCNTs functionalized by either positively or negatively charged cellulose-derivative polymers, as well as with positively charged or neutral small molecular surfactants, and tested the electrochemical performance of MR-1 in MESs in the presence of these functionalized SWCNTs. By simple injection into the MESs, the positively charged polymeric SWCNTs attached to the base carbon felt (CF) electrode, and as fluorescence microscopy revealed, allowed bacteria to attach to these structures. As a result, EET currents continuously increased over several days of monitoring, without bacterial growth in the electrolyte. Negatively charged polymeric SWCNTs also resulted in continuously increasing EET currents and a large number of bacteria on CF, although SWCNTs did not attach to CF. In contrast, SWCNTs functionalized by small-sized surfactants led to a decrease in both currents and the amount of bacteria in the solution, presumably due to the detachment of surfactants from SWCNTs and their detrimental interaction with cells. We expect our results will help researchers in designing materials for smart bioelectrical interfaces for low-scale microbial energy harvesting, sensing, and energy conversion applications.

摘要

微生物电化学系统 (MESs) 依赖于微生物通过细胞外电子转移 (EET) 将其厌氧呼吸过程中的电荷从微生物转移到电极的能力。为了提高设备中通常较低的输出信号,先进的生物电接口倾向于通过将带正电荷的多壁碳纳米管 (CNT) 等导电纳米颗粒附着在基本碳电极上来解决这个问题,以静电吸引带负电荷的细菌细胞膜。另一方面,一些报道指出功能化单壁 CNT(SWCNT)的表面电荷大小以及与细胞膜相互作用的官能团的大小的重要性,而不是它们的极性。为了阐明这些现象,在本研究中,我们制备并表征了由带正电荷或带负电荷的纤维素衍生聚合物以及带正电荷或中性小分子表面活性剂功能化的水溶性良好的 SWCNT 分散体,并测试了这些功能化的 SWCNT 存在下在 MESs 中的 MR-1 的电化学性能。通过简单地注入 MESs,带正电荷的聚合物 SWCNT 附着在基本碳纤维毡 (CF) 电极上,正如荧光显微镜所揭示的那样,允许细菌附着在这些结构上。结果,EET 电流在几天的监测中持续增加,而电解质中没有细菌生长。带负电荷的聚合物 SWCNT 也导致 EET 电流和 CF 上大量细菌持续增加,尽管 SWCNT 没有附着在 CF 上。相比之下,功能化的小分子表面活性剂的 SWCNT 导致电流和溶液中细菌数量的减少,这可能是由于表面活性剂从 SWCNT 上脱离以及它们与细胞的有害相互作用所致。我们希望我们的结果将帮助研究人员设计用于低规模微生物能量收集、传感和能量转换应用的智能生物电接口的材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95e4/11337164/9e10c998a11f/mt4c00749_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验