Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea.
Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
Bioorg Med Chem. 2024 Aug 1;110:117826. doi: 10.1016/j.bmc.2024.117826. Epub 2024 Jul 5.
Design, synthesis, and biological evaluation of two series of O-benzyl-hispidol derivatives and the analogous corresponding O-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O-benzyl derivatives series. The most potential compound 2e of O-benzyl derivatives elicited sub-micromolar MAO-B IC of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O-benzyl derivatives showed only 0.95 MAO-B IC and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
本文报道了旨在开发具有抗神经炎症活性的选择性单胺氧化酶-B 抑制剂的两个系列 O-苄基-千里光酚衍生物和类似的相应 O-苄基衍生物的设计、合成和生物评价。与 O-苄基衍生物系列相比,第一个 O-苄基千里光酚衍生物系列提供了几个更有潜力的活性和 MAO-B 抑制剂。O-苄基衍生物中最有潜力的化合物 2e 的 MAO-B IC 为 0.38µM,选择性指数 >264,而 O-苄基衍生物中最有潜力的化合物 3b 仅显示 0.95 MAO-B IC 和选择性指数 >105。将具有亚毫摩尔活性的最活跃化合物推进到进一步的细胞活力和诱导产生促神经炎症介质的评估中,证实化合物 2e 是一种潜在的先导化合物,可在 3µM 浓度下显著抑制神经炎症介质一氧化氮的产生,而在 30µM 时没有明显的细胞毒性。基于计算机的分子对接研究预测了与 MAO 酶的可能结合模式,并在分子水平上提供了见解。总的来说,本报告将化合物 2e 作为一种潜在的先导化合物,以开发具有潜在多功能的化合物。