Liu Haojie, Zhang Yao, Zhang Luyao, Mu Xilong, Zhang Lei, Zhu Sheng, Wang Kun, Yu Boyuan, Jiang Yulong, Zhou Jihan, Yang Feng
Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.
Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
J Am Chem Soc. 2024 Jul 24;146(29):20193-20204. doi: 10.1021/jacs.4c05295. Epub 2024 Jul 14.
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
高熵金属间化合物(HEI)纳米晶体由多种具有有序结构的元素组成,由于其独特的几何和电子结构以及“鸡尾酒效应”,在多相催化领域备受关注。尽管人们付出了巨大努力,采用先进的合成方法来调节金属组成和结构以提高其性能、表面结构以及HEI的局部化学有序性,并且探究它们在原子水平上与活性的相关性,但这些方面仍不清楚且具有挑战性。在此,通过使用原子分辨率电子断层扫描确定五元PdFeCoNiCu(PdM)HEI的三维(3D)原子结构,我们揭示了HEI的局部化学有序性调节表面电子结构,进而介导了依赖于烷基取代的炔烃半氢化反应。HEI PdM纳米晶体的3D结构特征是由无序(固溶体)壳包围的有序(金属间化合物)核,而非有序表面。核与壳之间的晶格失配导致明显的近表面畸变。金属间化合物核的化学有序性随退火温度升高而增加,驱动表面Pd和M之间的电子重新分布,但表面几何(化学无序)构型和组成基本不变。我们研究了具有不同局部化学有序性的HEI PdM对多种炔烃半氢化反应的催化性能,发现表面Pd的电子密度和烷基取代对炔烃的阻碍效应是调节选择性半氢化反应两个关键因素。我们预计,这些关于表面原子结构的发现将澄清关于HEI催化剂几何和/或电子效应的争议,并激发未来关于调节局部化学有序性和表面工程以增强催化剂性能的研究。