Suppr超能文献

多相催化剂中的界面:通过原子尺度测量推进对反应机理的理解。

Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.

Department of Chemical Engineering and Materials Science, University of California, Irvine , Irvine, California 92697, United States.

出版信息

Acc Chem Res. 2017 Apr 18;50(4):787-795. doi: 10.1021/acs.accounts.6b00596. Epub 2017 Feb 16.

Abstract

Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.

摘要

开发高效、选择性的新型催化剂对于实现未来清洁能源转化技术至关重要。催化剂体系中的界面一直被认为是控制催化反应机制的最关键因素。界面不仅包括催化剂表面,还包括催化剂颗粒内部的界面以及构建多相催化剂时形成的界面。催化表面的原子和电子结构控制着反应物分子从表面原子上结合和释放的动力学。通过调整表面原子和化学结构,可以在催化剂内部引入界面来提高催化剂的本征活性和稳定性。例如,在核壳、孪晶或畴界或单催化剂颗粒内的相界之间存在界面。在负载型催化剂纳米粒子(NPs)中,金属 NP 和载体之间的界面是增强催化活性的关键调节因素。通过使用支撑氧化物,可以间接调整表面电子结构并增加催化活性位点。在催化剂体系中调整界面已被确定为设计新型催化剂的重要策略。然而,界面如何影响催化剂行为的控制原理,特别是在与中间体的相互作用及其在电化学操作过程中的稳定性方面,在很大程度上仍然未知。这主要是由于这些界面的演变性质。这些界面的结构和化学配置的微小变化可能导致催化性能的改变。在合成、加工、使用甚至静态操作过程中,这些界面排列会不断演变。一种能够在原位监测动态界面行为的同时,以高精度探测局部原子和电子界面结构的技术,对于阐明界面的作用以及为精细调整和优化催化剂性能提供更深入的见解至关重要。扫描透射电子显微镜(STEM)长期以来一直是研究纳米材料的主要表征技术,因为它具有出色的成像分辨率和同时的化学分析能力。在过去的十年中,STEM 的发展,即像差校正器和单色仪的商业化,极大地提高了空间和能量分辨率。现在,使用 STEM 以亚埃分辨率成像原子结构和以单原子灵敏度识别化学物质已成为常规操作。这些进展极大地促进了催化研究。例如,晶格应变和表面元素分布的作用及其对双金属催化剂催化稳定性和反应性的影响已经在文献中得到了很好的证明。此外,通过 STEM 断层摄影术揭示的三维原子结构已被整合到理论模型中,以对预测性催化剂 NP 设计进行预测。稳定电子和机械器件的最新发展为在合成和反应条件下原位监测催化剂的演变提供了机会;高速直接电子探测器已实现了亚毫秒级的时间分辨率,并允许快速捕获结构和化学变化。使用这些最新显微镜技术对催化剂的研究为原子级催化机制提供了新的见解。进一步整合新的显微镜方法有望在相关合成和反应条件下提供界面的多维描述。在本述评中,我们讨论了使用先进的 STEM 技术理解催化剂活性、选择性和稳定性的最新进展,重点介绍了关键界面如何决定贵金属基多相催化剂的性能。讨论了扩展界面结构的作用,包括核壳之间、不同相和孪晶之间、催化剂表面和气体之间以及金属和载体之间的界面。我们还展望了新兴电子显微镜技术(如振动光谱和电子相术)将如何影响未来的催化研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验