Department of Neurology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
Zool Res. 2024 Jul 18;45(4):857-874. doi: 10.24272/j.issn.2095-8137.2024.085.
Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3β activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3β activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3β activation in primary hippocampal neurons, suggesting that GSK-3β, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3β as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.
新出现的证据表明,睡眠剥夺(SD)可导致阿尔茨海默病(AD)相关的病理改变和认知能力下降。然而,其潜在机制尚不清楚。在本研究中,我们确定了在慢性 SD 导致的认知缺陷中存在微生物群-肠-脑轴,并揭示了肠道微生物群影响慢性 SD 中认知功能的潜在途径。我们的研究结果表明,慢性 SD 不仅导致小鼠认知能力下降,还诱导肠道微生物群失调、NLRP3 炎性小体表达升高、GSK-3β 激活、自噬功能障碍和海马区 tau 过度磷酸化。用“SD 微生物群”定植可复制慢性睡眠剥夺小鼠中观察到的病理和行为异常。值得注意的是,在小鼠中敲除 NLRP3 或在海马体中特异性敲低 NLRP3 均可恢复自噬流,抑制 tau 过度磷酸化,并改善慢性 SD 引起的认知缺陷,而 GSK-3β 活性在慢性 SD 中不受 NLRP3 炎性小体调节。值得注意的是,NLRP3 缺失逆转了 GSK-3β 激活诱导的原代海马神经元中 NLRP3 炎性小体激活、自噬缺陷和 tau 过度磷酸化,表明 GSK-3β 作为 NLRP3 介导的自噬功能障碍的调节剂,在促进 tau 过度磷酸化中起重要作用。因此,肠道微生物群失调被确定为通过 NLRP3 介导的自噬功能障碍导致慢性 SD 诱导的 tau 病理学的原因,最终导致认知缺陷。总之,这些发现强调了 GSK-3β 作为 NLRP3 介导的自噬功能障碍的调节剂,在促进 tau 过度磷酸化中起关键作用。
Nature. 2019-11-20
Prog Neuropsychopharmacol Biol Psychiatry. 2020-6-8
Biomedicines. 2025-6-5
J Mol Biol. 2025-5-21
Cell Mol Immunol. 2025-4-30
Zool Res. 2025-1-18
MedComm (2020). 2024-11-20
Zool Res. 2024-7-18
J Biomed Sci. 2022-10-1
Cell Death Differ. 2022-10
Science. 2021-11-26
Annu Rev Med. 2022-1-27
Int J Mol Sci. 2021-7-12