Suppr超能文献

基于表观基因组数据的乳腺癌预后基因-年龄相互作用研究

[Gene-age interaction study of breast cancer prognosis based on epigenomic data].

作者信息

Zhou T L, Xue M J, Dai Z X, Zhang R Y, Chen F

机构信息

Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.

Information Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213164, China.

出版信息

Zhonghua Liu Xing Bing Xue Za Zhi. 2024 Jul 10;45(7):1007-1013. doi: 10.3760/cma.j.cn112338-20240201-00057.

Abstract

Exploring gene-age interactions associated with breast cancer prognosis based on epigenomic data. Differential expression analysis of DNA methylation was conducted using multiple independent epigenomic datasets of breast cancer from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The false discovery rate (FDR) method was used for multiple corrections, retaining differentially methylated sites with -FDR≤0.05. A three-stage analytic strategy was implemented, using a multivariable Cox proportional hazards regression model to examine gene-age interactions. In the discovery phase, signals with -FDR ≤ 0.05 were screened out using TCGA-BRCA database. In validation phaseⅠ, the interaction was validated using GSE72245 data, with criteria of ≤0.05 and consistent effect direction. In validation phaseⅡ, the signals were further validated using GSE37754 and GSE75067 data. A prognostic prediction model was constructed by incorporating clinical indicators and interaction signals. The three-stage analytic strategy identified a methylation site (cg16126280), which interacted with age to jointly affect the overall survival time of patients (interaction = 1.001 1,95%:1.000 7-1.001 5,<0.001). Stratified analysis by age showed that the effect of hypermethylation of cg16126280 was completely opposite in younger patients (=0.550 5, 95%: 0.383 8-0.789 6, =0.001) and older patients (=2.166 5, 95%: 1.285 2-3.652 2, =0.004). The DNA methylation site cg16126280 exhibits an interaction with age, jointly influencing the prognosis of breast cancer in a complex association pattern. This finding contributes new population-based evidence for the development of age-specific targeted drugs.

摘要

基于表观基因组数据探索与乳腺癌预后相关的基因-年龄相互作用。使用来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的多个独立乳腺癌表观基因组数据集进行DNA甲基化差异表达分析。采用错误发现率(FDR)方法进行多重校正,保留FDR≤0.05的差异甲基化位点。实施了三阶段分析策略,使用多变量Cox比例风险回归模型来检验基因-年龄相互作用。在发现阶段,使用TCGA-BRCA数据库筛选出FDR≤0.05的信号。在验证阶段Ⅰ,使用GSE72245数据验证相互作用,标准为≤0.05且效应方向一致。在验证阶段Ⅱ,使用GSE37754和GSE75067数据进一步验证信号。通过纳入临床指标和相互作用信号构建了预后预测模型。三阶段分析策略确定了一个甲基化位点(cg16126280),其与年龄相互作用共同影响患者的总生存时间(相互作用=1.001 1,95%:1.000 7-1.001 5,<0.001)。按年龄分层分析表明,cg16126280高甲基化的效应在年轻患者(=0.550 5,95%:0.383 8-0.789 6,=0.001)和老年患者(=2.166 5,95%:1.285 2-3.652 2,=0.004)中完全相反。DNA甲基化位点cg16126280与年龄存在相互作用,以复杂的关联模式共同影响乳腺癌的预后。这一发现为开发针对特定年龄的靶向药物提供了新的基于人群的证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验