Suppr超能文献

Thin inclusion at the junction of two elastic bodies: non-coercive case.

作者信息

Khludnev A M

机构信息

Lavrentyev Institute of Hydrodynamics of RAS, Novosibirsk 630090, Russia.

出版信息

Philos Trans A Math Phys Eng Sci. 2024 Aug 23;382(2277):20230296. doi: 10.1098/rsta.2023.0296. Epub 2024 Jul 15.

Abstract

This article addresses an analysis of the non-coercive boundary value problem describing an equilibrium state of two contacting elastic bodies connected by a thin elastic inclusion. Nonlinear conditions of inequality type are imposed at the joint boundary of the bodies providing a mutual non-penetration. As for conditions at the external boundary, they are Neumann type and imply the non-coercivity of the problem. Assuming that external forces satisfy suitable conditions, a solution existence of the problem analysed is proved. Passages to limits are justified as the rigidity parameters of the inclusion and the elastic body tend to infinity.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验