Kimura Masato, Takaishi Takeshi, Tanaka Yoshimi
Faculty of Mathematics and Physics, Kanazawa University , Kanazawa, Japan.
Musashino University , Tokyo, Japan.
Philos Trans A Math Phys Eng Sci. 2024 Aug 23;382(2277):20230297. doi: 10.1098/rsta.2023.0297. Epub 2024 Jul 15.
We investigate a physical characterization of the gradient flow structure of variational fracture models for brittle materials: a Griffith-type fracture model and an irreversible fracture phase field model. We derive the Griffith-type fracture model by assuming that the fracture energy in Griffith's theory is an increasing function of the crack tip velocity. Such a velocity dependence of the fracture energy is typically observed in polymers. We also prove an energy dissipation identity of the Griffith-type fracture model, in other words, its gradient flow structure. On the other hand, the irreversible fracture phase field model is derived as a unidirectional gradient flow of a regularized total energy. We have considered the time relaxation parameter a mathematical approximation parameter, which we should choose as small as possible. In this research, however, we reveal the physical origin of the gradient flow structure of the fracture phase field model (F-PFM) and show that the small time relaxation parameter is characterized as the rate of velocity dependence of the fracture energy. It is verified by comparing the energy dissipation properties of those two models and by analysing a travelling wave solution of the irreversible F-PFM. This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.
一种格里菲斯型断裂模型和一种不可逆断裂相场模型。我们通过假设格里菲斯理论中的断裂能是裂纹尖端速度的增函数来推导格里菲斯型断裂模型。这种断裂能对速度的依赖性通常在聚合物中观察到。我们还证明了格里菲斯型断裂模型的能量耗散恒等式,换句话说,其梯度流结构。另一方面,不可逆断裂相场模型是作为正则化总能量的单向梯度流推导出来的。我们考虑了时间松弛参数,这是一个数学近似参数,我们应尽可能选择较小的值。然而,在本研究中,我们揭示了断裂相场模型(F-PFM)梯度流结构的物理起源,并表明小时间松弛参数被表征为断裂能对速度的依赖率。通过比较这两种模型的能量耗散特性以及分析不可逆F-PFM的行波解来验证这一点。本文是主题为“力学中的非光滑变分问题及其应用”的一部分。