Schnell Jack, Miao Zhen, Achieng MaryAnne, Fausto Connor C, Wang Victoria, Kuyper Faith De, Thornton Matthew E, Grubbs Brendan, Kim Junhyong, Lindström Nils O
bioRxiv. 2024 Jul 2:2024.06.28.601028. doi: 10.1101/2024.06.28.601028.
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of / , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
肾脏通过重吸收必需化合物和排泄废物来维持体液平衡。近端小管细胞对于一系列糖类、离子和氨基酸的肾脏重吸收至关重要,但极易受到损伤,从而导致需要透析和肾脏移植的病症。虽然人类多能干细胞衍生的肾脏类器官被用于模拟肾脏发育、疾病和损伤,但这些三维结构中近端肾单位细胞的形成并不完整。在此,我们描述了如何通过遵循人类肾发生蓝图来驱动肾脏类器官中近端小管前体的发育。PI3K信号通路的短暂调控激活早期肾单位中的Notch信号,并促使肾单位向近端前体状态发展。这些“近端偏向性”(PB)类器官肾单位进而产生近端肾单位前体细胞。通过对类器官肾单位分化过程进行单细胞转录分析,比较对照型和PB型,证实了短暂的Notch信号对近端发育的必要性。PB类器官表现出与近端小管类似的葡聚糖和白蛋白摄取,这表明其具有功能成熟性。此外,PB类器官对肾毒性药物高度敏感,表现出损伤反应,并驱动肾脏损伤早期近端特异性标志物/的表达。受损的PB类器官显示出肾小管塌陷、DNA损伤的迹象,并上调损伤反应标志物。因此,PB类器官模型具有功能相关性,并且有潜力用于模拟支撑肾单位损伤的机制。这些进展改善了诱导多能干细胞衍生的肾脏类器官作为理解发育性肾脏病学、模拟疾病、测试新型疗法以及理解人类肾脏生理学工具的应用。